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DYNAMICS OF A SPLIT TORQUE HELICOPTER TRANSMISSION 

Timothy L. Krantz 
National Aeronautics and Space Administration 

Lewis Research Center 
Cleveland, Ohio 44135 

Summary 

Split torque designs, proposed as alternatives to traditional planetary designs for helicopter main rotor trans- 
missions, can save weight and be more reliable than traditional designs. This report presents the results of an 
analytical study of the system dynamics and performance of a split torque gearbox that uses a balance beam 
mechanism for load sharing. The Lagrange method was applied to develop a system of equations of motion. The 
mathematical model includes time-varying gear mesh stiffness, friction, and manufacturing errors. Cornell's 
method for calculating the stiffness of spur gear teeth was extended and applied to helical gears. The phenome- 
non of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies was simulated by model- 
ing total composite gear errors as sinusoid functions. Although the gearbox has symmetric geometry, the loads 
and motions of the two power paths differ. Friction must be considered to properly evaluate the balance beam 
mechanism. For the design studied, the balance beam is not an effective device for load sharing unless the 
coefficient of friction is less than 0.003. The complete system stiffness as represented by the stiffness matrix 
used in this analysis must be considered to precisely determine the optimal tooth indexing position. 
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Symbols 

[A] rotational coordinate transformation matrix 

B energy dissipation function 

C damping coefficient 

D rotation due to deflection 

E mean value of displacement element function 

e displacement element length 

F friction force 

I inertia 

K stiffness 

[K] stiffness matrix 

K mean value of stiffness 

L Lagrangian 

M mass or inertia 

Q generalized force 

q generalized coordinate 

r gear base radius 

T dimensionless time 

T total kinetic energy 

t time 

U unit torque 

V total potential energy 

X,Y,Z Cartesian coordinates 

. first time derivative 

second time derivative 
i '"  ■ • 

ak  [ angles defining locations of shafts (k = 1, 2, p, and B) 

ß helix angle of helical gears 

C,    * damping ratio 

9 rotational speed of component 

u coefficient of friction 

(j)   j phase angle of time-varying functions 



\|/ angular displacement of gears 

co input shaft speed 

Subscripts: 

a axial 

B bull gear 

b bearing 

bal balance beam 

i input energy source 

j counter subscript for generalized coordinates (j = 1,2,3,-48) 

m tooth mesh 

o output load 

p pinion 

s shaft 

sB shaft between bull gear and output load 

sp shaft between pinion and input energy source 

sl,s2 shaft between spur and helical gear of first and second compound gears 

xxbB bearing of bull gear in X-direction 

xxbp bearing of pinion gear in X-direction 

xxbl,xxb2    bearing of first, second compound gears in X-direction 

yybB bearing of bull gear in Y-direction 

yybp bearing of pinion gear in Y-direction 

yybl,yyb2    bearing of first and second compound gears in Y-direction 

zp axial direction of pinion 

zl,z2 axial direction of first, second compound gears 

1,2 first and second compound gears 

lh,2h first and second helical gears 

lmh,2mh     first and second helical mesh (pinion and compound gears) 

ls,2s first and second spur mesh (compound and bull gears) 



Chapter 1 

Introduction 

1.0    Background 

The requirements for the drive systems of helicopters and other aircraft are especially demanding. The engine 
supplies the power at high speed whereas the rotor must operate at low speed. The drive system transmits the 
engine power to the rotor while providing a speed reduction that, for helicopters, is typically 100 to 1. Also, the 
weight, mechanical efficiency, vibration characteristics, and reliability of the drive system all have a significant 
impact on the overall performance of the vehicle. The weight of the drive system is an especially important fac- 
tor. As a result of analysis, experimentation, and field experience, rotorcraft transmissions have evolved to provide 
a high degree of performance. However, further improvements in performance are desired. The next generation 
of rotorcraft will require lighter, quieter, and more reliable drive systems to increase the vehicle payload, 
improve performance and readiness, provide greater passenger comfort and safety, and lower operating costs. 

The configuration of the main rotor gearbox is one of the most important characteristics of a helicopter's 
drive system. The most common and conventional configuration for the final gear stage of a main rotor gearbox 
is a planetary stage which has an output shaft driven by several planets. This configuration permits the division 
of the transmitted torque among several planets. This division results in a gearbox that is lighter compared with 
a parallel shaft gearbox in which each gear transmits the entire torque. An alternative to the conventional plane- 
tary stage is a split torque stage. A split torque design is a parallel shaft arrangement that, similar to a planetary 
stage, transfers power to the output shaft through multiple pinions. This arrangement shares the torque-splitting 
advantage of a planetary stage, and it also can have a larger reduction ratio than is possible for a planetary 
design. A large reduction ratio at the final gear stage tends to reduce the overall transmission weight. Researchers 
developing the designs and technology for future rotorcraft transmissions have considered using a split torque 
stage and, in some cases, have chosen designs using split torque stages as the most promising configuration 
(refs. 1 to 3). One design proposed for a split torque stage helicopter application is shown in figure 1.1. White 
(ref. 4) states that this split torque stage not only offers an overall weight reduction, but also promises the 
following advantages when compared with a conventional planetary design: 

(1) High ratio of speed reduction at final stage 
(2) Reduced number of gear stages 
(3) Lower energy losses 
(4) Increased reliability of separate drive paths 
(5) Fewer number of gears and bearings 
(6) Lower noise levels from gear meshes 

Thus, there is sufficient justification to pursue the development of a new generation of helicopter transmissions 
that include a split torque stage. 

Split torque configurations for aircraft have had limited production applications. A split torque design for a 
helicopter main rotor gearbox was developed by Westland Helicopters (ref. 5), and another design is used in the 
Russian Mi-26 heavy lift helicopter (ref. 6). Although not known by the name split torque, similar configura- 
tions are also used in marine gearboxes (ref. 7). Many different split torque gearbox conceptual designs have 
been proposed (refs. 1 to 13). An aspect of all the split torque designs that must be addressed by the designer is 
the equality of the torque split. Because of manufacturing errors, one of the two power paths might carry much 
more than half of the total power path unless some effective load-sharing method is employed. Since each 



power path must be sized to carry the maximum possible load, the weight of the transmission will be minimized 
only if the equality of the torque split can be guaranteed. One method to control this equality is to specify and 
maintain very precise manufacturing tolerances. This is a feasible option for today's manufacturing capabilities 
but may not be the optimal solution. Other methods have been proposed, including axially floating shafts, tor- 
sionaUy compliant shafts, balancing mechanisms, and laterally compliant bearing supports. These methods may 
significantly alter the vibration properties and performance of the gearbox. The performance of a split torque 
design depends heavily on the method selected to achieve torque splitting. The purpose of this work was to 
develop and apply a dynamic analysis for split torque transmissions, with an emphasis on load sharing. 

1.1    Scope and Approach 

The focus of this work was to study one particular split torque gearbox configuration (fig. 1.1) that was 
proposed by White (ref. 4) for a helicopter main rotor transmission. The emphasis was to evaluate the system 
dynamics and especially the torque sharing between the two parallel power paths. The results can be used to 
gain an understanding of the characteristics of this particular split torque design. Also, the mathematical model 
that was developed can be adapted to analyze and optimize other geared systems using split torque arrangements. 

The remainder of this report is divided into three sections. Chapter 2 describes both the methods used to 
develop a mathematical model for studying split torque gearbox arrangements and those used by others to model 
geared systems. The assumptions made and methods used to develop the mathematical model are described. A 
set of equations is derived to describe the loads and motions of the gearbox. Special considerations unique to 
modeling split torque arrangements are discussed. The methods used to make the equations of motion non- 
dimensional are described along with solution techniques for the computer simulation of gearbox motions. 

Chapter 3 describes new techniques developed and used to model closed-loop test facilities, helical gear 
mesh stiffnesses, and gear manufacturing errors. Both static and dynamic analytical solutions were obtained for 
the mathematical model. The solutions are discussed to describe the effects of friction, bearing stiffness, and 
manufacturing errors on the system's performance. Chapter 4 presents a summary and the conclusions drawn 
from this work. 



Chapter 2 

Mathematical Modeling 

2.0   Review of Gear Dynamics Modeling 

Many researchers have studied the analytical simulation of geared system dynamics. A great number of 
mathematical models, analytical methods, and computer codes have been developed. A representative sampling 
of these methods can be found in references 14 to 25. The proper approach and the complexity of the mathe- 
matical model depend on both the characteristics of the system being simulated and on the phenomena being 
investigated. 

A representative model used to study gear dynamics (fig. 2.1) consists of two rigidly mounted disks. The 
rotational displacements of these two disks are coupled by three elements located along a line tangent to both 
disks. These three, a spring, a damper, and a displacement element, are used to model the meshing gear teeth. 
Much work has been done to study how to assign the proper characteristics to these three elements to simulate 
either a typical or a particular pair of gears (e.g., refs. 26 to 28). The spring stores potential energy. Most 
researchers use a time-varying function to define the spring stiffness. The function approximates the stiffness 
change that occurs when the number of gear teeth in contact changes as the gears rotate. The damper dissipates 
energy and is often defined as a proportional clamper. Therefore, its characteristics change with time since it is 
proportional to the time-varying mesh stiffness. The displacement element can be thought of as a massless, rigid 
link whose length changes as a function of the angular positions of the pinion and gear. It is included in the 
model for simulating the phenomenon of transmission error and is often defined as a function of time. 

A pair of gears with infinitely rigid teeth and perfect involute profiles transmits exactly uniform angular 
motion. Any real gear pair deviates from transmitting uniform angular motion, and this deviation is called the 
dynamic transmission error. A real gear pair deviates from transmitting uniform motion because of the compli- 
ance of the gear teeth, effects of inertia, and deviations of the actual contacting surfaces of the loaded teeth from 
conjugate surfaces. These deviations can include intentional profile modifications, manufacturing errors, and 
deflections of the gear body and supports. Considered the main source of vibration excitation in many geared 
systems, the loaded static transmission error is the error of a loaded gear pair rotating at a very slow speed and, 
therefore, rotating with no inertia effects. The relative contributions of the various components of the loaded 
static transmission error (i.e., varying stiffness, manufacturing errors, support deflection) depend on the gear 
design, tooth profile modifications, the manufacturing quality, the torque level being transmitted, and the mechanical 
properties of other system components. Similarly, defining the stiffness, damping, and displacement elements of 
a gear mesh model depends on the system and the phenomena being studied. For example, some researchers 
(refs. 23 and 24) have used a constant mesh stiffness and an appropriate definition of the displacement element 
and were able to successfully simulate the motions of real systems. However, this method may not be appropri- 
ate for all gear systems and analyses. 

Gear pairs are only components of a larger mechanical system. Input and output inertias connected to the 
gears through torsionally compliant shafts are often included in gear dynamics models. For many real systems 
that have relatively compliant shafts and bearing mounts, the torsional and lateral motions are strongly coupled. 
To simulate this phenomenon, the lateral stiffness of the gear mounts must be included in the model. Gear systems 
with multiple stages (ref. 16) and planetary arrangements (refs. 29 to 32) have also been modeled and studied. 

A recent study of a split torque helicopter transmission is that of D. Hochmann, D. Houser, and J. Thomas 
(ref. 33). They analyzed the load distribution of spur and double helical gear pairs used in a split torque helicopter 



transmission. They suggested that, by altering the gear tooth profile modifications and by staggering the phasing 
of the double helical gear mesh used in the design, the loaded static transmission error could be reduced without 
seriously degrading load distribution on the gear teeth. 

Another aspect of split torque configurations that has not been rigorously studied is the overall dynamic 
behavior. A special characteristic of split torque drivetrains is the use of some method to guarantee that the 
power be split evenly between the parallel paths. Several different methods have been proposed (refs. 1 to 13). 
Rashidi and Krantz (ref. 34) developed a mathematical model to study these power-splitting or load-sharing 
methods and to study the system dynamics of the resulting design. One of the main objectives of this work was 
to apply the mathematical model to simulate the motions and loads of the split torque test rig at the NASA 
Lewis Research Center. The remainder of this chapter describes the analytical method and solution techniques. 
The application of the model is described in chapter. 3. 

2.1    Description of the Design 

The transmission design under study, a cooperative effort of the U.S. Army and the NASA Lewis Research 
Center, is a split torque gearbox proposed and developed by G. White (ref. 4) under an Army-NASA contract to 
approximate the power requirement and match the speed reduction requirement of a version of the U.S. Army's 
OH-58 helicopter main rotor transmission. The final two gear stages of the split torque test gearbox are shown 
in figure 2.2. This design relies on the positioning of helical gears by a self-adjusting mechanism to obtain load 
sharing. A main rotor transmission using this concept was projected to be 25 percent lighter than a conventional 
design using a planetary output stage. 

A split torque test gearbox using this design was built to research split torque concepts. The rated input 
power to the test gearbox is 373 kW (500 hp) at 8780 rpm. The input power is carried through the input helical 
pinion and is split between two helical gears at the first reduction stage. The power is combined at the second 
and final reduction stage. Two spur pinions drive the output bull gear at 347.5 rpm. Thrust loads are produced 
at each of the two helical meshes. These loads are reacted through a pivoted balance beam. The beam acts to 
balance the power carried by each shaft by coupling the axial positions of the two gear/pinion assemblies. The 
concept of this design is that the thrust loads act to adjust the axial positions of the two gear/pinion assemblies 
such that the power is split evenly between the two power paths. 

One of the main objectives of this work was to develop a mathematical model that could be used to identify 
and study the effect of design parameters on the overall dynamic behavior of the system. For example, the angles 
between the centerlines of the gears (identified in fig. 2.3) were considered a possible significant parameter. 
These angles influence the stiffness properties of the system and, for a given set of gears, define the relative 
phasing of the time-varying mesh stiffnesses. It was also desirable to study the effect of a subcomponent's 
mechanical properties on the system performance; thus, the analytical method was chosen and applied with these 
objectives in mind. The following important properties that can be simulated by the model are categorized as 

(1) Microgeometric parameters such as tooth profile geometry, shaft hub eccentricities, and tooth spacing 
and lead errors 

(2) Macrogeometric parameters such as gear mesh pitch and pressure angles, the helix angle of the helical 
mesh, and shaft and bearing locations 

(3) Component material properties and bulk dimensions that define the inertia, stiffness, and dampening 
properties of the components 

(4) Type and geometry of the bearings that support the gear shafts 



2.2    Analytical Model 

The split torque transmission design shown in figure 2.2 was modeled by a set of inertia, stiffness, damping, 
and displacement elements. The analytical model is shown in figure 2.4 with the gear/pinion assemblies termed 
as compound gears. Along with the inertia and stiffness elements shown, the model also includes a damping 
element parallel to each stiffness element, an input inertia, and an output inertia. Displacement elements are also 
included at the gear mesh locations as illustrated in figure 2.5. 

The analytical model shown in figure 2.4 is described by 21 coordinates. The angular positions of the gears, 
input and output inertias, and balance beam require nine coordinates. The axial positions of the pinion, first 
compound gear, second compound gear, and balance beam require four coordinates. The translations of the four 
gear shafts require another eight coordinates. Note that describing the translations of the four gear shafts with 
eight coordinates implies the assumption that the shafts do not tilt. This assumption was made because the shafts 
of the design are short compared with the gear diameters. By making this assumption, we avoid the need for 
another eight coordinates to describe the system. To further reduce the number of coordinates required, the 
moments of inertia of the helical pinion and the balance beam and the mass of the balance beam were con- 
sidered negligible compared with the others in the system. Under these assumptions, the analytical model is 
described by a system of 18 equations of motion. The number of equations can be reduced to 17 by eliminating 
the rigid body mode of this semidefinite system. 

For this system, the equations of motion were derived by the standard Lagrange method: 

(     \ 
dL 

i^JJ +®L-?k = Q.        (j = U,3,...,18) 
At JA Tin ' 

(1) 

dt dq}       d^ 

where L = T - V, T is the total kinetic energy, V is the total potential energy, B is the energy dissipation func- 
tion, q= is the generalized coordinate, Qj is the generalized force associated with each generalized coordinate qj? 

and t is the time. 

In applying the method, it was assumed that the gears contact along the theoretical line of action and that all 
stiffness elements were linear but, in the case of the gear meshes, were time-varying periodic functions. The 
damping elements were modeled with proportional damping expressed in terms of the damping ratio £, stiffness 
K, and inertia M, as C = V2£KM. Damping in rolling element bearings was assumed negligible, and therefore 
the bearings were modeled with only stiffness elements. Each bearing was described with a 2-by-2 stiffness 
matrix to include cross-coupling effects at the bearings. 

The kinetic energy of this system is formulated as 

T = i. I    Mfl]        (j = 1,2,3 18) (2) 

The energy dissipation function of this system is formulated as 

B = .1 £    C-q?        0 = 1,2,3,...,18) (3) 



The potential energy of this system was categorized as four groups. The first is the stored potential energy 
due to the distortion of the gear teeth. The equation describing this energy is most conveniently written by 
choosing a coordinate system with one coordinate parallel to the line of action. Therefore, to describe this stored 
energy, two coordinate systems were defined for each gear as shown in figure 2.5. The energy stored at a 
particular mesh is first expressed in the coordinate systems parallel to the line of action. Then, one of the two 
coordinate systems at each gear was chosen as the global system (i.e., the one in which the equations of motion 
were to be written). The second system was labeled as a local system. Reference frames with the asterisk super- 
script in figure 2.5 are local. The energy stored in the gear teeth was then described in only the global coordi- 
nates by transforming the local coordinates via rotational coordinate transformations. These coordinate trans- 
formations introduce the shaft locations of the gear train into the mathematical model as design/analysis 
parameters. For example, the potential energy stored in the helical mesh of the input pinon and second 
compound gear is expressed in the local coordinate system as 

V2mh = -iK2mh(t)[rp cos(ß)¥p - ^ cos(ß)¥2h + cos(ß)Yp* 

- cos(ß)Y2 + sin(ß)Zp - sin(ß)Z2 - e2h(t)]
: 

To do the analysis, the local coordinate Y* is transformed by 

Yp* = Yp cos(ap) - Xp sin(ap) 

(4) 

(5) 

By applying relation (5) to equation (4), the potential energy can be expressed in only global coordinates as 

V2mh = I K2mh(t)[rp cos(ß)Tp - r2h cos(ß)Y2h + cos(ß) cos(ap)Yp ^ 

- cos(ß) sin^pXp - cos(ß)Y2 + sin(ß)Zp - sin(ß)Z2 - e2h(t)]2 

The potential energies stored in the other gear meshes were derived in a similar manner. 

The second potential energy group is the energy stored in the bearings as a result of shaft translations, 
expressed as 

Vb = I K^X2 + 2. K^Y 2 + i. K„b2X2
2 + 1 K^Y: 

(7) 

+  J KxxbpXP   +    2" KyybpYP   +  ~2 K**>B
X

B   +  -^ KyybBYB 

The third group is the potential energy stored in the twisted shafts, expressed as 

(8) 



The fourth group is the potential energy due to the distortion of the balance beam support and the elements 
connecting the beam to the compound gear shafts, expressed as 

Va = I K2I(Z, - L^ - ZJ2 +i. K^Z, + L^ - ZJ2 + 2. K^Z*  + i. K^ (9) 

By applying the Lagrange method, the system of 18 equations of motion was derived. This method was 
applied with the knowledge that the equations of motion would be solved numerically using a time-marching 
method. We assumed that the increment of time for the solution was small enough such that the time-varying 
mesh stiffness could be considered constant during a single time step. Of course, over a large time scale, the 
mesh stiffness is not constant. Therefore, after each solution step, the stiffness properties were reevaluated, and 
thus the time-varying mesh characteristics were included in the model. A typical equation of motion is presented 
in appendix A. The equations of motion were written with the displacement element terms ey(t) appearing on the 
right-hand side of the equations as parts of the generalized forcing functions Qjj(t). In this study, the components 
of the friction forces that oppose axial motions were included whereas all other friction forces were assumed 
negligible. The generalized forcing functions were written so that sources of excitation such as gear hub-shaft 
runouts, gear geometry errors, and input-output torque fluctuations could be simulated. The time-varying mesh 
stiffness is a parametric excitation for the system that will cause vibrations even in the absence of generalized 
forcing functions. 

The equations of motion were expressed in dimensionless forms using certain characteristic parameters 
inherent to the physical system. Appendix B includes a glossary of the dimensionless parameters and an 
explanation of how they were included in the model. 

2.3    Solution Method 

The dimensionless equations of motion were integrated in time by a fifth/sixth-order Runge-Kutta method 
(ref. 35). The solution step time size was selected to be no greater than 1/20 of the period of the helical gear 
mesh so that the gear mesh stiffness could be considered constant over that time frame. For this maximum step 
size, 16 167 solutions are required to simulate 1 revolution of the output gear. The solution of a system of 
equations of motion depends, of course, on the initial conditions and on the definition of the generalized forcing 
functions. The initial conditions (both positions and velocities) and forcing functions must be representative of 
the physical system so that a solution represents real physical phenomena. 

For gear systems with only a single reduction stage, one may define the initial conditions of the system by 
an iterative method. Typically, it is assumed that the solution is periodic with the gear mesh period. An initial 
condition for the dynamic solution is assumed and is usually based on a static solution for a given load 
condition as a starting point. Then the equations are integrated for a time equal to the period of the gear mesh, 
and the final positions and velocities are compared with the initial conditions. Because the solution is assumed 
periodic, the initial and final conditions should be equal within some small tolerance. If they are not within 
tolerance, then a new set of initial conditions for the next iteration are calculated as a weighted average of the 
initial and final conditions of the previous iteration. This procedure is repeated until the proper initial conditions 
are found. Although this procedure was employed successfully, it has some limitations. One is that it does not 
directly allow inclusion of sources of vibration excitation except those whose frequency matches the gear mesh 
frequency. For example, to study the system response to accumulative pitch errors, the proper initial conditions 
for the case with no pitch errors is first found. Then it is reasoned that these initial conditions for the no-pitch- 
error case must be close to the case with pitch errors, and those conditions are used as the starting condition for 
the solution with pitch errors included. Another limitation is that this method cannot be applied to a multiple- 

10 



reduction-stage system in which there is more than one gear mesh frequency. Attempts to analyze a multiple- 
reduction-stage system were not successful (ref. 36). 

To avoid these limitations, an alternate method of defining the initial conditions and forcing functions was 
devised. The present study begins the solution with the initial condition such that the system has no stored 
potential energy. This condition is met if all of the initial positions and velocities equal zero. Also, the net 
externally applied forces must equal zero. Conceptually, this can be thought of as the system operating under no 
load with all inertias rotating at a constant speed and with no vibrations. Of interest here are the motions of the 
system under design load. To make the transition from zero load to full load, input and output torques were 
applied as ramp functions, that is, as slowly and smoothly applied loads (shown in fig. 2.6). The torque applied 
to the output inertia was in the opposite direction of that applied to the input inertia and at every instant was 
equal in magnitude to the product of the input torque and the overall gear ratio. In this way, the net acceleration 
of the center of mass of the system was kept equal to zero. I have found that this method of starting the solution 
works well and avoids the limitations of the iterative procedure. The drawback is that a number of computations 
must be done to make the transition from no load to full load. Step functions (suddenly applied loads) were also 
tried to reduce the computations needed to make the transition from zero to full load, but the response of the 
system included very large vibrations not realistic for any physical system. All solutions in this study used the 
ramp loading function method. 

11 



Chapter 3 

Analysis of Split Torque Gearbox Loads and Motion 

3.0    Static Analysis 

Although the actual dynamic loads of a gearbox are significantly different from the loads calculated by 
static analysis, the results of a static analysis can still reveal the characteristics of the gearbox and provide a 
baseline for a comparison with a dynamic analysis. For a static analysis of the NASA split torque gearbox 
design, the simplifying assumptions of no friction and laterally rigid shafts and shaft mounts were used. The 
bearing reactions calculated are given in table I. Note that, although the gearbox has symmetric geometry, the 
bearing reactions of the two compound shafts are not the same. Therefore, one can anticipate that the dynamic 
loads and motions of the two parallel paths will differ significantly. Also note that the sum of the bearing 
reactions of each compound shaft (locations 3 and 4 for one shaft, 5 and 6 for the other shaft) is on the order of 
5000 to 7000 lb. On the other hand, the thrust loads generated by the helical gears will be on the order of 
200 lb. The balance mechanism for load sharing operates on the principle that the balance beam will move and 
position the compound shafts in reaction to any difference in the thrust forces of the two parallel power paths. 
Considering the orders of magnitude of the bearing reactions and thrust forces, one can expect that the friction 
forces acting to prevent the axial motions of the compound shafts will be significant and should be included in 
the dynamic analysis. 

TABLJE I.—RESULTS OF STATIC ANALYSIS 

[Bearing forces at full design load.] 

Bearing 
location 

Load Load direction, 
deg 

kN lbf 

1 3.57 800 24 
2 4.57 1030 17 
3 15.6 3520 137 
4 6.05 1360 176 
5 18.0 4040 174 
6 14.3 3210 164 
7 29.5 6640 335 
8 16.2 3650 335 

3.1    Modeling Bearing Stiffness 

The work of R. Singh and T. Lim (ref. 37) was used to calculate the bearing stiffness characteristics used 
for the dynamic analysis. Their proposed bearing stiffness matrix in its most general form has 12 degrees of 
freedom. The number of degrees of freedom can be reduced by making assumptions about the shafts and 
mounts. Herein, to keep the total system model a reasonable size, I assumed rigid shafts and bearing mounts. 
Then, for the lateral directions, the bearing stiffness was described with a 2-by-2 matrix consisting of sub- 
components k„, kyy, kjy, and k^ with the x-direction being parallel to the net force on the bearing. The numeric 
values for the bearing stiffness matrix components depend on the bearing geometry and load and on the material 
properties. Figure 3.1 shows the dependence of load on the stiffness coefficients k„ and k^ for the input pinion 
ball bearing (bearing number 1 of table I). 
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Once the bearing stiffness characteristics were calculated, two additional steps were taken to incorporate 
them in the system dynamic model. The first step was to account for the effect of the operating load on the 
bearing stiffness. One way to account for the load would be to calculate the bearing operating load at each time 
step of the dynamic solution, based on the initial conditions for that time step. However, to simplify the 
procedure and to save computing time, it was assumed that the dynamic bearing motions would be small 
compared with the mean bearing displacements. Therefore, the bearing stiffnesses were calculated for the static 
nominal load condition, and these values were used throughout the dynamic solution. Therefore, although the 
nonlinearities depicted in figure 3.1 were considered in calculating the bearing stiffness at the static load, the 
nonlinearities were not included in the equations of motion of this study. The ignored effect should be small as 
long as the bearing dynamic displacements about the mean displacement are small. 

The second step to include the bearing stiffnesses into the system model was to account for the direction of 
the bearing loads. The global coordinate systems that were used to describe the lateral motions of the shafts 
were chosen to simplify the equations describing the stored potential energies due to distortions of the gear teeth 
(fig. 2.5 and eq. (4)). Also, the potential energies stored in the bearings (eq. (7)) were written using these same 
global coordinate systems. To calculate the coefficients of equation (7), the bearing stiffness matrices were 
determined for local coordinate systems parallel to the static bearing loads. Also, the angles between the static 
bearing loads and the global coordinate systems were determined. The bearing stiffness matrices were then 
transformed to the global coordinate systems by 

[K] = [A]T[K*][A] (10) 

where 

[K] 

[A]T 

[K*] 

[A] 

matrix in global coordinate system 

transpose of [A] 

matrix in local coordinate system 

rotational coordinate transformation matrix 

The results of the calculations for one bearing are shown in table n. 

TABLE n.—BULL GEAR ROLLER 

BEARING STIFFNESS MATRIX 

Coordinate Stiffness, 
system 

** = J 
106 lb/in. 

Local 
11.4 6.9 

6.9   9.5 

Global 
16.4  -3.7 

-3.7   4.6 
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3.2    Modeling Gear Stiffness and Damping 

A spring, a damper, and a displacement element are included in the mathematical model to simulate each 
gear mesh. The analytical code was written assuming that the spring stiffness and displacement elements were 
constant over each time step of the numeric solution but varied over larger time scales. Therefore, the gear mesh 
stiffness and damping were calculated at the beginning of each time step. In this study, the gear mesh stiffness 
and damping were assumed to be periodic functions of time with a fundamental period equal to that of the mesh 
period for a constant pinion speed. Following is a description of the methods and assumptions used to define 
these functions to model the particular configuration and design of this study. 

For this study, I have assumed that the gear mesh provides only a small amount of clamping. A damping 
ratio £ of 0.01 was used for the proportional dampers to simulate a lightly damped system. 

The time-varying characteristics of the spur gear mesh stiffness were defined by first using the work of 
Cornell (ref. 26) to determine the compliance of a single pair of contacting gear teeth. Cornell defined the com- 
pliance along the line of action in terms of gear dimensions and material properties. The method includes tooth 
bending effects, fillet and foundation effects, and deformation at the hertzian contact. Rim effects, which in 
some cases can be significant (refs. 27 and 38), were not considered in this study because the design has fairly 
thick rims and calculating individual tooth loads was not a part of this study. The geometric preprocessor of the 
gear dynamics computer program GEARDYNMULT (refs. 30 and 31) was used to calculate a set of coefficients 
via Cornell's method. These coefficients define the tooth pair compliance of a single pair of contacting teeth as 
a function of the position along the line of action. To calculate the gear mesh stiffness for a particular angular 
position of the pinion, the position of contact along the line of action for each tooth pair in contact was calcu- 
lated. The tooth pair stiffness was then calculated using the information from the output of the GEARDYNMULT 
code, and the tooth pair stiffnesses for all pairs of teeth in contact were summed to calculate the total gear mesh 
stiffness. This procedure was repeated for a number of angular positions to adequately determine the periodic 
gear mesh stiffness. Details of the calculation method and the GEARDYNMULT computer program output are 
given in appendix C. The single tooth pair compliance as a function of contact position along the line of action 
is shown in figure 3.2. The mesh stiffness, including the effect of the changing number of teeth in contact, is 
shown as a function of pinion position in figure 3.3. Note that the maximum stiffness is almost twice the mini- 
mum stiffness. The mesh stiffness shown in this figure can be defined as a function of time by assuming a con- 
stant pinion speed. A piecewise smooth function was fit to the mesh stiffness data to create a time-varying mesh 
stiffness function for the split torque dynamics code. 

The procedure just described was extended to define the time-varying characteristic of the helical mesh. The 
method of Cornell applies directly only to spur gears. Therefore, to extend the method, the helical gears were 
modeled as a number of staggered spur gears as illustrated in figure 3.4. This approximation accounts for the 
stiffness effects in the transverse plane and accounts for the moving contact position along the length of the 
helical tooth. The axial stiffness effects are not accounted for with this approximation. However, because the 
helix angle of this design is small (6°), this ignored effect should be small. The helical gear dimensions in the 
normal plane were used as input to the computer program GEARDYNMULT to determine Cornell's compliance 
coefficients of each spur gear slice. The face width of each slice equaled the axial face width of the gear divided 
by the number of staggered spur gears. For a given angular position of the helical pinion, the number of stag- 
gered spur gear elements with teeth in contact and the contact position along the lines of action were calculated. 
The stiffnesses for all spur gear pairs in contact were summed to calculate the gear mesh stiffness for that posi- 
tion of the pinion and then were repeated for several different angular positions. The computer code used for the 
calculations and the output are given in appendix D. The results of the calculations for two different cases are 
shown in figure 3.5; (a) a coarse model with 24 spur gear slices and (b) a fine model with 240 spur gear slices. 
It is interesting to note that, although the stiffness variation for spur gears is nearly 2 to 1, the stiffness for the 
helical gears varies by only 14 percent. The function shown in figure 3.5(b) was redefined as a function of time 
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by assuming a constant speed for the pinion. A piecewise smooth function was fit to the mesh stiffness data to 
create a time-varying mesh stiffness function for the analytical code. 

A unique property of gearboxes that have multiple load paths, such as split torque and planetary designs, is 
the phase relationships of the gear meshes. Consider a pinion driving two gears. If the length of the arc along 
the pitch circle joining the two pitch points (fig. 3.6) is an integer multiple of the circular pitch, then both 
meshes will pass through the pitch point at the same instant of time, and the mesh properties can be considered 
in phase. For the design studied here, the mesh properties are out of phase as shown in figure 3.7. Although for 
a given set of gears and shaft locations the mesh phase relationships are defined, the phase relationships were 
included as a variable in the analytical model so that the effect of mesh phasing could be assessed indepen- 
dently. The mesh phasing can be considered a design variable. 

3.3 Modeling Manufacturing Errors 

To simulate the dynamics of a real system, the loaded static transmission error of the analytical model 
should match that of the physical system. Because the stiffness elements were defined as flexible gear teeth with 
assumed perfect involute shapes under load (i.e., with proper profiles for the full load condition), the displace- 
ment elements of the gear mesh model were defined to simulate the main component of the unloaded static trans- 
mission error attributable to manufacturing errors. The actual errors of the gears were not known or measured, 
but the manufacturing specifications were AGMA class 12 quality. Based on typical single-flank and index vari- 
ation measurements, illustrated in figure 3.8, the total transmission variation often has a large component peri- 
odic with the gear revolution. This component of the total transmission variation is mainly a combination of 
accumulated pitch error and gear runout. In this study, the displacement element of the gear mesh was defined 
as the sum of two sinusoidal functions, one function for each gear in mesh, with the period of each sinusoidal 
function equal to the period of gear revolution. The amplitude of the sinusoidal functions can be varied to simu- 
late different levels of gear quality. The simulated unloaded and loaded static transmission error for rigid bear- 
ings, full design torque, and one set of assumed error amplitudes for one of the gear meshes are shown in figure 3.9. 

Assembly error, a manufacturing error unique to split torque arrangements, was included in the model. A 
split torque arrangement creates a locked loop of gearing as illustrated by the heavy line of figure 3.10. Under a 
nominal light load, each of the four gear meshes in the loop will be engaged if, and only if, the splitting mesh 
gear and combining mesh pinion carried on each common shaft have been assembled with the required relative 
angular relationship. This condition can also be thought of as the two gears requiring a particular tooth timing 
relationship. One can anticipate that because of manufacturing limitations, any real gearbox will not have the 
required relationship but will have some error in the assembly. Under light load, this error will cause a gap at 
one of the four gear mesh locations. The purpose of the various proposed split torque load-sharing methods is to 
compensate for or minimize the effect of this gap. In this study, the assembly error was simulated by adding a 
mean value to one gear's sinusoidal error function described in the preceding paragraph. Therefore, referencing 
equation (4), the potential energy stored in the gear mesh was adjusted to account for the gap that exists under 
no load by adding a constant term to the sinusoidal function e^t) that defines the displacement element. The 
numeric value of the constant term can be adjusted to simulate varying amounts of assembly error. 

3.4 Modeling Friction 

Although the friction forces from tooth sliding were neglected, the friction forces that tend to oppose the 
axial motions of the helical gears in response to the thrust of the meshing helical teeth were included in the 
model. Friction is present both at the contacting gear teeth and at the bearing supports. This friction opposes 
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axial motions of the gears. The magnitude of the friction forces can be significant compared with the thrust forces, 
especially if the helix angle of the mesh is small. Therefore, the friction effects were included in the analytical 
model. The friction force was calculated at the beginning of each time step and was assumed constant over the small 
time steps of the solution. The following procedure was used to calculate the magnitude and direction of the friction 
forces. First, for each shaft carrying a helical gear, the maximum possible total friction force was calculated as 

F     = Fhuh + F u (11) max b~b mnm 

where 

Fb sum of magnitudes of bearing forces on shafts 

ub coefficient of friction at bearings 

Fm sum of magnitudes of tooth mesh contact forces 

u,,, coefficient of friction at meshing gear teeth 

Second, two separate cases must be considered, one for the shaft at rest and one for the shaft in motion. The 
shaft was considered at rest if the magnitude of the velocity was less than 0.00025 inVsec (the shaft velocity 
was compared with this small value rather than with 0 to account for truncation and roundoff errors of the 
numeric solution). 

For the shaft in motion, the friction force opposes the motion and so was calculated as 

Ffrict = [sign] • F^ (12) 

where the [sign] is -1 if velocity > 0 or is +1 if velocity < 0. For the shaft at rest, the friction force is in the 
direction opposite the net of all other forces and has a magnitude equal to the lesser of the net of the other 
forces and the maximum possible friction force. So, for the shaft at rest, the net of the other forces was 
calculated using the matrix form of the equation of motion: 

(13) 
F* = -([K]{Y} + [C]{Y}) +Fe 

where 

[K] relevant row of stiffness matrix 

{Y} generalized displacement vector 

[C] relevant row of damping matrix 

{Y} generalized velocity vector 

Fe relevant term of generalized force vector 

Then, the friction force was calculated as 

Ffrict = ts^on] " Minimum of 

where the [sign] is -1 if F* > 0 or is +1 if F* < 0. 
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The friction force calculated using the procedure just described was added as a constant to the generalized 
force vector {F}, and then the equations of motion were integrated. The magnitude and direction of the friction 
forces were recalculated at the beginning of each step of the time-marching solution. 

3.5    Modeling A Closed-Loop Test Stand for Open-Loop Analysis 

Although the analytical model of this study is an open-loop system, the experimental rig that was used to 
test the gearbox design is part of a closed-loop system (fig. 3.11). Here, the terms "open loop" and "closed loop" 
are not used in the sense of control theory but as a description of the power flow in the system. The closed-loop 
system consists of nominally identical test and slave gearboxes loaded against each other. The drive motor rotates 
the system at the desired speed. This closed-loop system is often used for testing gear systems because it can be 
done at high power by establishing a large torque in the loop while the drive motor needs only to supply a rela- 
tively small amount of power to overcome frictional losses. If the gearbox were tested in an open-loop facility, 
a larger drive motor and a large power-absorbing unit would be required. Although the closed-loop system is 
convenient and economical for experiments, analytical codes are written to analyze the open-loop structure of 
field designs. Since it is desirable to compare the analytical results of this study to experimental data as it be- 
comes available, a method for modeling the closed-loop configuration of the experimental facility was developed. 

One option for analyzing the motions of the experimental test rig was to expand the analytical model to 
include the inertias and stiffnesses of the slave gearbox and drive motor. This mathematical model would have 
many more equations and require much effort to develop. A second option, used for this study, was to model 
the closed-loop system with an open-loop model (fig. 3.12) and select numeric values for the input and output 
inertias and stiffnesses of the open-loop model to best simulate the closed-loop system. I propose that one apply 
these two rules to determine the numeric values: 

(1) The kinetic energy of the input and output inertias of the analytical model should equal the kinetic 
energy of all the physical system components that are not directly represented in the analytical model. 

(2) The ratio of the input inertia to the output inertia of the analytical model should equal the ratio of the 
stiffnesses of the two branches of the parallel paths to the drive motor. 

The first rule matches the total kinetic energies of the analytical and the physical systems; the second rule 
matches the exchange of potential and kinetic energies in the two systems. For the physical system, vibration in 
the test gearbox tends to cause motion of the drive motor through both of the two parallel paths of the closed- 
loop system. If one ignores inertial effects for the moment, the torque induced in each path by vibration is 
proportional to the stiffnesses of that path. The larger portion of inertia is assigned to the suffer path to match 
the way potential energies are stored and imparted to the drive motor. Also, by applying the second rule, the 
natural frequency of the output inertia/stiffness pair will match that of the output inertia/stiffness pair. Therefore, 
in the analytical model the frequency responses of the input and output inertias to some excitation within the 
test gearbox tend to be the same. This matched response is similar to the physical closed-loop system where 
there is only one "group" of inertias and stiffnesses responding to the excitation. 

For the test rig I studied, all the components in the loop have approximately the same stiffness relative to 
the load carried; one exception was the torquemeter located between the two bull gear shafts (fig. 3.11). To 
achieve good sensitivity, the torquemeter has a stiffness that is approximately 1 order of magnitude less than 
that of the other components, which were designed for strength using conservative methods. As a result, approx- 
imately 90 percent of the total inertia of the drive motor and slave gearbox was assigned to the input inertia, 
and approximately 10 percent was assigned to the output inertia. Details of the calculations to determine the 
numeric values are given in appendix E. 
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3.6    Dynamic Analyses and Results 

Dynamic analyses were completed for five cases representing different sets of operating conditions or 
assumptions. Following is a description of the simulated conditions and the results for each case. 

3.6.0 Case 1—Nominal analysis 

The first case investigated, herein termed the nominal conditions, used some simplifying assumptions so that 
some experience with the computer code could be gained and a baseline could be established for further studies. 
The following simplifying assumptions were used for case 1: no assembly error was present; Coulomb friction 
forces in the directions parallel to the shaft axes were zero; and the amplitudes of the total accumulative pitch 
variations of the gears were small, on the order of 0.00005 in. An analysis was conducted over the range of 
dimensionless time (0 to 2300) wherein the relation between dimensionless time and dimensioned time was 

T = copt (15) 

where 

T      time, dimensionless 

(öp    speed of input pinion, 919.23 rad/sec 

t       time, sec 

Therefore, the 2300-dimensionless time analyzed represents about 2.5 sec of operation with the gearbox 
running at full rated speed. The total simulation includes 14.5 revolutions of the low-speed output shaft. The 
system was loaded to full rated torque using ramp-shaped forcing functions that increased the load linearly from 
zero load at time T = 0 to full load at time T = 500. The complete input data set for the computer code is given 
in table IE. 

The simulated dynamic shaft torques are shown and compared with the shaft torques for ideal load sharing 
under static conditions in figure 3.13. The dynamic shaft torques vary about the expected static solution. The 
torques of the two compound shafts, plotted together in figure 3.13(b), show nominally good load sharing but 
with significant dynamic peaks. 

The simulated lateral shaft vibrations, plotted as shaft orbits for time T = 900 to 2300, for all four shafts are 
shown in figure 3.14. All the bearing orbits are stable and have reasonable amplitudes. It is interesting that the 
orbits of the two compound shafts are significantly smaller than either the input shaft or output shaft orbits. 

The simulated axial motions of the input shaft and compound shafts are shown in figure 3.15 (the output 
shaft carries only a spur gear and was assumed fixed axially). In the absence of friction, as assumed herein, 
large axial motions occur. Note that the phase difference in the sinusoidal plots of the two compound shafts 
indicates a rocking motion of the balance beam as it functions to balance the torque split. 

18 



TABLE m.-COMPUTER ANALYSIS INPUT FILE 

Value for 
computer code 

Description Units 

9.1923D+02 Speed, input pinion rad/sec 

6.0000D+00 
122.50D+00 
138.72D+O0 
48.620D+00 
50.200D+00 

Helix angle, input pinion 
Pinion shaft angle 
Number 1 
Number 2 
Bull gear shaft angle 

deg 

2.5000D+06 
2.0500D+05 

Stiffness, beam center support 
Stiffness, beam to gear shaft 

lb/in. 

O.OOOOD+OO 
35.000D+O0 
140.00D+00 
29O.00D+O0 
70.000D+00 
340.00D+00 

Displacement function 
phase angles 

Helical pinion 
Helical gear 1 
Helical gear 2 
Spur pinion 1 
Spur pinion 2 
Bull gear 

deg 

-38.400D+O0 
163.50D+O0 

Mesh phase angles Helical mesh 
Spur mesh 

deg 

1.0000D-05 
1.5O00D-O5 
6.000OD-O5 
9.0000D-05 

Displacement function 
amplitudes components 

Helical pinion 
Helical gear 
Spur pinion 
Bull gear 

in. 

13.000D+O6 
1.2000D+O5 
9.0000D+06 

Shaft torsional 
stiffness 

Compound 
Input 
Output 

in.-Ib/rad 

3.6590D+O0 
1.2235D+00 
0.94425+00 
7.9754D+00 

Base radii Helical gear 
Spur gear 
Helical pinion 
Bull gear 

in. 

4.5000D+00 
10.240D+00 
65.000D+O0 

Mass Input pinion shaft 
Compound shafts 
Bull gear shaft 

lb 

46.800D+O0 
23.000D+00 
12.0000+00 
1030.0D+00 
3510.0D+00 

Inertias Input 
Helical gear 
Spur pinion 
Bull gear 
Output 

lb-in.2 

OOO.OOD+OO 
1.0000D+05 
1.0000D-02 

Start time 
Number of solution steps 
Step size 

Dimensionless 
time 

O.OOOOD-00 Assembly error in. 

0.0200D+00 
0.0050D+00 

Coefficient of 
friction 

Gear teeth 
Bearings 

Dimensionless 

The results shown in figures 3.13 to 3.15 indicate that the computer solutions are mathematically robust. 
The ramp-shaped forcing function method for establishing the initial conditions produces a periodic solution. A 
method for achieving dynamic solutions of split torque gearbox designs was demonstrated. 
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3.6.1  Case 2—Effect of Assembly Error in Presence of Friction 

The effect of assembly errors and friction on the performance of the split torque design was studied by com- 
pleting a dynamic analysis. The analysis of case 1 was repeated except that friction forces parallel to the shaft 
axes and assembly error were added. Here, it was assumed that under light load a gap was present between the 
helical pinion and the helical gear of the first compound shaft. Four different simulations, using assembly error 
magnitudes of 0.0000, 0.0013, 0.0026, and 0.0040 in., were completed. The 0.0040-in. magnitude of assembly 
error represents the maximum that can exist and still permit assembly of the gearbox. That is, with the 0.0040- 
in. assembly error at the helical gear mesh, the back side of the pinion tooth just touches a tooth on the gear. 
The friction coefficients assigned were 0.005 for the bearing supports and 0.020 for the contacting gear teeth. 
These values were assumed based on data reported by other researchers (refs. 39 and 40). Solutions were com- 
pleted to cover 0- to 2400-dimensionless time assuming the gearbox running at full rated speed and using the 
same ramp shaped loading function as used for case 1. 

The predicted axial motions for the solution with friction present but no assembly errors are shown in fig- 
ure 3.16. The axial motions were greatly reduced compared with those for the solution with no friction (fig. 3.15). 
Once the steady-state positions are reached, there exists only a small axial motion of the input shaft while the 
two compound shafts are essentially at rest. The steady-state displacement of the two compound shafts is not 
equal, indicating that the balance beam has rotated. The balance beam motions both with and without friction 
present and with zero assembly error are shown in figure 3.17. Without friction, there is a large, low-frequency 
oscillation of the balance beam. However, with friction included in the analysis, the beam rotates toward a 
steady-state position without vibration. These results show that it is important to include friction in the model to 
predict the performance of this design. 

The influence of assembly errors and friction on the shaft torques is significant. The predicted shaft torques 
for the solution assuming an 0.0040-in. assembly error and with friction present are shown in figure 3.18. The 
input and output shaft torques vary about the static solution and are essentially identical to the solution with no 
friction and no assembly error (fig. 3.13). However, because of the assembly error, the compound shafts no 
longer carry the same mean torque. Also, note that the frequency content of the dynamic torques of the two 
compound shafts is different. This difference in frequency content is more difficult to see but is also present in 
the data of figure 3.13. It is not surprising that the two compound shaft torques differ because the loading of the 
two shafts is not the same, as was determined even by a simple static analysis (table II). The differences between 
these two shafts were studied further and are discussed in section 3.6.4. 

The influence of the assembly errors on load sharing was studied. The motion of the balance beam for four 
different magnitudes of assembly error is shown in figure 3.19. The beam rotates toward a position to balance 
the load sharing, but because of friction, the balancing is not exact. The significance of this phenomenon is 
shown in figure 3.20 where the mean torque ratio is defined as the mean torques of the compound shafts nor- 
malized to the total mean torque. For the ideal case in which each shaft carries one-half of the total power, the 
mean torque ratio for each shaft would equal 50 percent. The relation between the assembly error and the mean 
torque ratio is linear. The maximum mean shaft torque for the conditions assumed here is approximately 55 per- 
cent of the total whereas the ideal condition is 50 percent. Figure 3.20 suggests that an assembly error of about 
0.0002 in. is an optimal tooth indexing relationship because the total compliance of the two load paths, includ- 
ing the coupling of lateral and rotational displacements, influences the amount of torque carried in each of the 
parallel paths. The complete system stiffness represented by the stiffness matrix used in this analysis must be 
considered to precisely determine the optimal tooth indexing positions. 
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3.6.2 Case 3—Effect of Friction Magnitude 

Seven dynamic analyses were completed to study the effect of the friction coefficient on the effectiveness of 
the balance beam concept. Seven analyses were completed. For each, the coefficient of friction at the bearings 
and at meshing gear teeth was assumed to be equal. The coefficient of friction for the seven analyses was varied 
from 0.001 to 0.050. An assembly error of 0.0040 in. at one helical mesh was used for each analysis. The 
remainder of the input variables for the computer code matched those of case 1 (given in table III). The ramp 
loading method was used, with the load increasing linearly from 0 at dimensionless time 0 to full load at 
dimensionless time 500. The calculations were completed to include the dimensionless time 0 to 1600. 

The steady-state portion of the solutions, from dimensionless time 700 to 1600, was used to calculate the 
mean torque ratios for each analysis. The mean torque ratios are a measure of the effectiveness of the balance 
beam mechanism in balancing the power split. These ratios are plotted as a function of the friction coefficient in 
figure 3.21. For a friction coefficient greater than about 0.003, the balance beam is for practical purposes locked 
in place by the friction forces. The mean torque ratios of 45 and 55 percent indicate the balance beam is not an 
effective device for load sharing unless the friction coefficient is less than 0.003. In practice, the coefficients are 
likely to be in the range 0.005 to 0.020 (refs. 39 and 40). It may be necessary to increase the helix angle of the 
helical gears (from the very shallow 6° of the design studied in this report) to improve the load sharing of the 
balance beam split torque transmission. Changing the helix angle will affect the entire transmission design, 
including the load capacity. This is beyond the scope of this paper. 

3.6.3 Case 4—Effect of Bearing and Tooth Stiffnesses 

Calculations for four analyses were completed to study the relative contributions of bearing and tooth stiff- 
nesses to the torque-sharing characteristics of the design. For all calculations, the friction coefficients used were 
0.020 at the gear teeth and 0.005 at the bearings. Also, an assembly error of 0.0040 in, for the helical mesh of 
the first compound shaft was used for all cases. First were two static analyses, one assuming both the gear teeth 
and bearings were rigid and a second assuming that the gear teeth were flexible but the bearings rigid. For these 
two analyses, it was assumed that the balance beam did not rotate. The third was a dynamic analysis that assumed 
normal gear tooth stiffnesses and very stiff bearings. The values used for the bearing stiffnesses in this analysis 
method were 500 times greater than those calculated for the actual design. The fourth was a dynamic analysis 
assuming flexible gear tooth and bearing stiffnesses. 

The mean torque ratios were calculated for each of the four analyses just described. The resulting torque ratios 
are given in table IV. In analysis 1, both bearings and gear teeth assumed rigid with an 0.0040-in. assembly error, 
the code predicts that compound shaft 1 carries all the torque whereas compound shaft 2 rotates but transmits no 
load. This first analysis assumes that only the compound shaft torsional deformation contributes to accommodating 
the assembly error. This analysis is overly conservative in establishing a required tolerance for the assembly error. 

The second analysis includes the gear tooth flexibility in the calculations. Comparing the results of analyses 1 
and 2 as presented in table IV, one can infer that the gear tooth deformation does significantly contribute to 
accommodating the assembly error. Analysis 2 predicts that the torque will split 90 to 10 percent between the 
two load paths in the presence of an 0.0040-in. assembly error. This second analysis is also overly conservative 
in establishing an assembly error tolerance. 

The third analysis is dynamic. Gear teeth were assumed flexible and the bearings very stiff. The predicted 
mean torque ratios using the dynamic analysis are quite different from those of the two static analyses. The 
improved load sharing predicted by this dynamic analysis compared with that predicted by the static analysis is 
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a combined result of adding some flexibility at the bearings and of including the effect of balance beam motion 
in the model. 

The fourth analysis is similar to the third except that the bearings were assumed flexible. Comparing the 
mean torque ratios calculated by analyses 3 and 4 as presented in table IV, one can infer that the bearing 
deformations contribute significantly to accommodating the assembly error. The results of this study indicate 
that gear tooth and bearing flexibUity significantly affect the torque-sharing property of this design. Along with 
shaft torsional flexibility, both should be included in the calculation for establishing a desired assembly error 
tolerance for a given design. This dynamic analysis could be used to predict the mean torque ratio for a given 
assembly error. 

TABLE rv.—COMPARISON OF ANALYSIS METHODS 

FOR PREDICTING TORQUE RATIOS 

Analysis Shaft 

1 2 

Torque ratio* = 

inn v Mean shaft torque 
Total mean torque 

percent 

1.     Static analysis 
(rigid bearings and 
gear teeth) 

100.0 0 

2.     Static analysis 
(rigid bearings, 
flexible gear teeth) 

90.8 9.2 

3.     Dynamic analysis 
(very stiff bearings, 
flexible gear teeth) 

71.6 28.4 

4.     Dynamic analysis 
(flexible bearings 
and gear teeth) 

56.1 43.9 

"Assembly error, 0.0040 in. 

A comparison of some of the results of analyses 3 and 4 reveals some coupling of the lateral and torsional 
vibrations of the system. For example, when the shaft torques for the case with very stiff bearings (fig. 3.22) are 
compared with those for the case with flexible bearings (fig. 3.18), there exists a high-frequency component in 
the dynamic torques of the compound shafts for the case with stiff bearings. This indicates that, depending on 
the bearing stiffnesses, the lateral and torsional vibrations could be strongly coupled in this system. Also, fig- 
ures 3.18 and 3.22 illustrate the contribution of bearing flexibility to improving the load sharing of this design. 

The contribution of bearing flexibility to accommodating assembly error is further illustrated by the results 
of analysis 4 as presented in figures 3.23 and 3.24 in which the dynamic gear mesh deformations are plotted. 
These deformations can be considered the sum of several components (described by eq. (4)) that are also plotted 
in the figures. Note that, although the assembly error (represented by the mean of the gear error component) and 
the angular motions tend to cause compression of the gear mesh spring element, the lateral motion cancels the 
compression by a significant amount. It is also interesting to note that the low-frequency part of the angular 
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Vibration tends to be transmitted to the lateral vibration; on the other hand, the high-frequency part of the 
angular vibration is not transmitted to the lateral vibration. 

3.6.4 Case 5—Effect of Total Composite Gear Error 

The effect of total composite gear error on the dynamics of the system was investigated. The main compo- 
nent of a typical composite gear error due to manufacturing inaccuracies was modeled in this study by defining 
the displacement elements as a sinusoid function whose frequency was equal to that of the mean gear rotation 
speed (i.e., shaft frequency). This simulates both runout and typical accumulated pitch error. The amplitudes of 
the sinusoid functions for the dynamic analyses of both a small error (case 1, section 3.6.0) and a large error 
(case 5) are listed in table V. Dynamic analyses were completed for the range of dimensionless time 0 to 1600. 

TABLE V.—MAGNITUDE OF DISPLACEMENT 

ELEMENT FUNCTIONS FOR LARGE 

AND SMALL GEAR ERRORS 

Gear element Case 

Small error Large error 

Displacement element amplitude, 
in. 

Helical pinion 
Helical gears 
Spur pinions 
Spur gears 

l.OxlO"5 

1.5 
6.0 
9.0 

lZOxlO"5 

15.0 
14.0 
20.0 

The effect of gear error on the system dynamics is significant. The dynamic torque for the compound shafts 
is much greater for the large gear error case (fig. 3.25) than for the small gear error case (fig. 3.18). 

To further investigate the phenomenon, the shaft torque data were transformed to the frequency domain 
using the Fast Fourier Transform techniques. The mean torques were removed from the torque data before the 
transforms were done. The power spectral densities of the input and compound shaft torques between 0 and 
10 000 Hz are shown in figure 3.26. The main components of the input shaft torque are the shaft frequencies, 
caused by the gear error excitation, and the helical mesh fundamental frequency. There are also sidebands about 
the helical mesh fundamental spaced at shaft frequencies, which is common in gearbox vibration spectra. The 
main components of the compound shaft torque are the shaft frequencies and the spur mesh frequency with its 
harmonics. On first inspection, the frequency spectra of the two compound shafts may seem very similar although 
the time domain representations look very different. However, on closer inspection, differences are also evident 
in the frequency domain. Figure 3.27 shows the power spectral densities between 0 and 200 Hz. Note that, even 
though both shafts are excited by the same sources, compound shaft 2 has a much greater response at its rota- 
tion frequency. This response may be attributed to the differences in the mean bearing loads, which change the 
bearing stiffnesses. Figure 3.28 shows the power spectral densities between 800 and 1200 Hz. The sidebands 
about the spur mesh fundamental are spaced at the compound shaft frequency and are much greater for shaft 2 
than for shaft 1. Again, this comparison illustrates that, although the gearbox has a symmetric geometry, the 
dynamics of the two power paths are not the same. 

To further investigate the effect of a large gear error on the system, the shaft orbits, gear mesh forces, and 
dynamic transmission errors were calculated. A comparison of figure 3.29, showing the shaft orbits for large 
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gear errors, with figure 3.14, showing shaft orbits for small gear errors, reveals that the input shaft orbit has 
grown substantially whereas the compound and output shaft orbits are relatively similar. There seems to be 
some weak coupling between the lateral and torsional vibrations at the shaft frequencies. 

The helical gear mesh forces are shown in figures 3.30 and 3.31. The variation of the helical mesh force 
over one mesh period (figs. 3.30(a) and 3.31(a)) is about 100 lb for both load paths, and the shapes of the plots 
over one mesh period are very similar. On the other hand, comparing figures 3.30(b) and 3.31(b) reveals a large 
variation in the gear mesh force at the input shaft frequency for helical mesh 1 that is not present for helical 
mesh 2. 

The spur mesh forces are shown in figures 3.32 and 3.33. The variation of the spur mesh force over one 
mesh period (figs. 3.32(a) and 3.33(a)) is about 5000 lb for mesh 1 and 3500 lb for mesh 2. Also, the shapes of 
the waveforms over one mesh period are different, which may be caused by the difference in the mesh phasing 
illustrated in figure 3.7. The variations in spur mesh forces over shaft frequencies (figs. 3.32(b) and 3.33(b)) are 
very similar for the two load paths. 

The predicted dynamic transmission errors were calculated for each pinion/gear pair by subtracting the ideal 
gear angular position from the position predicted by dynamic analysis. The predicted transmission errors are 
shown in figures 3.34 and 3.35. A positive number indicates that the angular position lags the position of the 
ideal gear. As with the torque and gear mesh forces, there is a significant low-frequency component due to the 
total composite gear error of the spur gear. The dynamic transmission errors of the two helical gears (fig. 3.34) 
are very similar. For the spur gears, however, the transmission error of the first gear includes a component at 
the input shaft frequency (fig. 3.35(a)) that does not appear in the transmission error of the second gear 
(fig. 3.35(b)). 

The results of the analyses just presented show that the frequency responses of the two power paths are 
different even though they have the same geometry. The phenomenon of sidebands spaced at shaft frequencies 
about gear mesh fundamental frequencies (as often seen in gearbox vibration spectra) was simulated by 
modeling the gear errors as sinusoid functions. A method for simulating the effect of accumulated pitch errors 
and/or runout errors on the performance of a gearbox has been presented and demonstrated, but a correlation 
between manufacturing accuracy and gearbox performance was not attempted. The magnitude of the composite 
gear error excitation used in this example is likely to be larger than that which actually occurs in practice, 
especially for the helical mesh. When compared with spur gears, the larger overall contact ratio of helical gears 
tends to better smooth out the effects of index variation. It is not possible to investigate this concept with the 
model used here because the individual tooth index errors are not modeled. Instead, the net effect is approxi- 
mated by a single time-varying displacement element. A possible area of future work would be to refine the 
method for directly modeling gear index errors. 
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Chapter 4 

Summary of Results 

A dynamic analysis method for split torque transmissions was presented and applied to study the load shar- 
ing and other characteristics of a split torque design. A mathematical model was developed by applying the 
Lagrange method to derive a system of 18 equations of motion to describe the design. The effects of time- 
varying mesh stiffness, friction, and manufacturing errors were included in the model. The equations of motion 
were made nondimensional and were solved using a fifth/sixth-order Runge-Kutta method. Several studies were 
completed to evaluate the design. 

The following specific methods were developed and applied 

(1) A method for calculating a time-varying mesh stiffness for helical gears was developed by extending 
Cornell's method for spur gears. The helical gears were modeled as a set of staggered spur gears. 

(2) A ramp loading method was developed and used to define the initial conditions of the set of equations 
of motion. 

(3) A method for analyzing a closed-loop system by using an open-loop model was developed and applied. 

(4) The effects of runout and accumulated pitch errors were simulated by defining the displacement element of 
the gear mesh model to be the sum of two sinusoid functions whose periods equal those of the gear rotation periods. 

(5) A mathematically robust method for the dynamic analysis of split torque transmissions was developed 
and demonstrated. 

The following results were obtained: 

1. Even though the gearbox geometry is symmetric, the loads and motions of the two power paths differ. 

2. Friction must be included in the model to properly evaluate the balance beam mechanism and the per- 
formance of the design. 

3. For the design studied, the balance beam mechanism is not an effective device for load sharing unless the 
coefficient of friction is less than 0.003. 

4. The relation between the magnitude of assembly error and the resulting mean torque ratios of the two 
power paths is linear. 

5. The complete system stiffness as represented by the stiffness matrix used in this analysis must be 
considered to precisely determine the optimal tooth indexing positions. 

6. For the design studied, both gear tooth and bearing flexibility should be considered along with shaft 
torsional flexibility for establishing a required tolerance for assembly errors. 

7. The phenomenon of sidebands spaced at shaft frequencies about gear mesh fundamental frequencies, as 
often occurs in real gearbox vibration spectra, was simulated by modeling the main component of typical total 
composite errors as sinusoid functions. 
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Appendix A 

Typical Equations of Motion for the Split Torque Transmission 

The system has 18 equations of motion. The equation of lateral displacement of the first compound gear Y, 
is presented below: 

M,Y, + {cos2(ß)Klmh + cos^cgK,™ 

+ [rp cos2(ß)Klmh]2/[r^ cos2(ß)(Klmh + KJ + KJ + K^.JY, - {sin^cos^) Klras}X, 

- {[(rp cos2(ß)Klmh)(rp cos2(ß)sin(ap)K2mh]/^ cos2(ß)(Klmh + K J + KJ} X„ - {cos2(ß)Klmh 

- ([rp cos2(ß)Klmh]{rp cos2(ß)[Klmh + cos^K JVfr2, cos2(ß)(Klmh + K J + KJ}Yp 

- {[(rp cos2(ß)Klmh)(rp cos2(ß)K2mh]/[r
2

p cos2(ß)(Klrah + K J] + KJY2 - {cos(a1)Klms}YB 

+ {coS(ß)sin(ß)Klnül + [(rp cos2(ß)KImh)(rp cos(ß)sin(ß)Klmh)]/[r
2

p cos2(ß)(Klmh + KJ + KJ}Z, 

- {[(rp cos(ß)sin(ß)K2mh)(rp cos2(ß)K JMr2. cos2(ß)(Klmh + K J + KJJZ, - {cos(ß)sin(ß)Klnih 

+ [(rp cos2(ß)Klmh)(rp cos(ß)sin(ß)(Klmh + KJMr2. cos2(ß)(KImh + K J + KJ}Z„ 

- {[(KJrp cos2(ß)K J/fr2, cos2(ß)(Kltnh + KJ + KJ} ^ 

+ {rlh cos2(ß)Klmh + [(rp cos2(ß)Klrah)(rprlh coS
2(ß)KImh)]/[r

2
p cos2(ß)(Klmh + KJ + KJ}*Flh 

+ {[(rp cos2(ß)Klmh)(rpr2h cos2(ß)K2mh)]/[r
2

p cos2(ß)(Klmh + KJ 

+ KJ} V* + {rls coS(a,)Klms}¥ls - {rB cos(aI)K1„}«PlB + C^Y + Q..X, 

+ Q,3^p + C^Yp + C^Y + C-2,8% + Q^Zq + C^JOZJ + ciu Zp 

+ ^-2,12 *i + C^U Mh + C^^Xa, + C2,i5Xls + C2,i7XB 

= - {[- Klmh cos(ß) + (r2, cos2(ß)Klmh)/(r
2

p coS
2(ß)(Klmll + KJ + KJ]elh(t) 

+ [(rp cos2(ß) KlmhKJ/(rJ cos2(ß)(KImh + KJ + KJJe^t) - [K,„ 005(0,)] els(t)} 
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Appendix B 

Dimensionless Analysis 

The equations of motion are expressed in dimensionless forms using certain characteristic parameters 
inherent in the geartrain system. The characteristic parameters are 

E length, where E  is the mean value of the displacement element function of the pinion 
and helical compound gear 

time, where cop is the pinion speed 

force, where Klmh is the mean value of the time-varying mesh characteristic stiffness of 
the pinion compound mesh 

1/(0. 

EpKlmh 

(EK,mh)r p    lmh' p 

EA p p 

torque, where rp is the pinion base circle radius 

angle 

The preceding characteristic parameters were used to define the following dimensionless parameters: 

cot time 

Displacement/Ep 

rP/EP 

M(0p/Klnih 

I<öp/rp
2KImh 

<öpC/Klnih 

<öpC/rpKlnih 

<öpC/rpKlmh 

<öpC/rp
2Klmh 

K(t)/Klnih 

K(t)/rpKlmh 

K(t)/rpKlmh 

K(t)/rD
2K lmh 

Force/(EpKlnih) 

Torque/(rpEpKlinh) 

linear displacement 

angular displacement 

inertia in linear displacement equation 

inertia in angular displacement equation 

damping of linear displacement in linear equation of motion 

damping of linear displacement in angular equation of motion 

damping of angular displacement in linear equation of motion 

damping of angular displacement in angular equation of motion 

stiffness of linear displacement in linear equation of motion 

stiffness of linear displacement in angular equation of motion 

stiffness of angular displacement in linear equation of motion 

stiffness of angular displacement in angular equation of motion 

force 

torque 

These dimensionless parameters were employed to carry out a computer simulation of the dynamics of this 
geartrain. 
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Appendix C 

Calculations to Determine Spur Mesh Stiffness 

The output from the GEARDYNMULT program is presented herein. The calculations to determine spur 
mesh stiffness were performed for the NASA Lewis split torque rig spur mesh. The nominal dimensions from 
engineering prints were used for the calculations. The output file from GEARDYNMULT follows: 

SUN-PLANET MESH 

ROTATIONAL PLANE 
INVOLUTE MODIFICATIONS 
********************** 

(ENGAGEMENT) 

PINION 

LOC. INV. MODIFIC. DIA. ROLL ANG 
MIN. MAX. 

0.0 0.000000 0.000000 2.7000 26.7174 
0.1 0.000000 0.000000 2.6836 25.7954 
0.2 0.000000 0.000000 2.6677 24.8734 
0.3 0.000000 0.000000 2.6522 23.9514 
0.4 0.000000 0.000000 2.6373 23.0295 
0.5 0.000000 0.000000 2.6229 22.1074 
0.6 0.000000 0.000000 2.6090 21.1855 
0.7 0.000000 0.000000 2.5956 20.2635 
0.8 0.000000 0.000000 2.5827 19.3415 
0.9 0.000000 0.000000 2.5704 18.4195 
1.0 0.000000 0.000000 2.5586 17.4974 

GEAR 

LOC.   INV. MODIFIC. 
MIN.      MAX. 

DIA. ROLL ANG. 

0.0 
0.1 
0.2 

0.9 
1.0 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

.000000 

.000000 

.000000 

.000000 

.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

17.6000 
17.6167 
17.6334 
17.6502 
17.6671 
17.6841 
17.7011 
17.7182 
17.7354 
17.7527 
17.7700 

26.7173 
26.8587 
27.0002 
27.1416 
27.2832 
27.4245 
27.5659 
27.7074 
27.8488 
27.9903 
28.1316 

LOC.   INV. MODIFIC. 
MIN.      MAX 

(DISENGAGEMENT) 

PINION 

DIA. ROLL ANG. 

0.0  0.000000  0.000000 2.7000 26.7174 
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0.1 0.000000 0.000000 2.7202 27.8188 
0.2 0.000000 0.000000 2.7411 28.9203 
0.3 0.000000 0.000000 2.7626 30.0218 
0.4 0.000000 0.000000 2.7847 31.1233 
0.5 0.000000 0.000000 2.8075 32.2247 
0.6 0.000000 0.000000 2.8309 33.3262 
0.7 0.000000 0.000000 2.8548 34.4278 
0.8 0.000000 0.000000 2.8793 35.5292 
0.9 0.000000 0.000000 2.9044 36.6307 
1.0 0.000000 0.000000 2.9300 37.7323 

GEAR 

LOC. 

0.0 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 
0, 
1. 

INV. MODIFIC. 
MIN.      MAX. 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 
0.000000 

DIA. 

17.6000 
17.5802 
17.5604 
17.5408 
17.5213 
17.5019 
17.4826 
17.4634 
17.4443 
17.4253 
17.4064 

ROLL ANG. 

26.71731 
26.54831 
26.37931 
26.21031 
26.04141 
25.87241 
25.70351 
25.53451 
25.36541 
25.19651 
25.02751 

INPUT DATA 

DRIVE  SIDE 

(INCH) 
(INCH) 

,(INCH) 
(INCH) 
(INCH) 
(INCH) 

(LB/SQ.INCH) 

NO.TEETH   - SUN 
NO.TEETH - PLANET 
PRESSURE ANGLE (DEGREES) 
DIAMETRAL PITCH 
TOOTH TIP RADIUS TOL. 
EDGE BREAK ON TOPLAND 
MACHINED BACKLASH TOL. 
ROOT RADIUS TOL. 
FACE WIDTH - SUN 
FACE WIDTH - PLANET 
YOUNGS MOD.*E-6 - SUN 
YOUNGS MOD.*E-6 - PLANET (LB/SQ.INCH) 
POISSONS RATIO  - SUN 
POISSONS RATIO  - PLANET 
SURFACE ROUGHNESS-MAX (AA) 
OIL INLET TEMPERATURE (DEG.F) 
INITIAL RPM OF RANGE 
FINAL RPM OF RANGE 
NUMBER OF INTERVALS 
TORQUE INPUT (IN-LBS) 
TOTAL INV.PROFILE MODIFICATION,ENGAGE (INCH) 
TOTAL INV.PROFILE MODIFICATION,DISENG (INCH) 
INV.PROFILE MOD.LOCATION-% OF SOE 
INV.PROFILE MOD.LOCATION-% OF SOD 
INV.PROFILE MOD.TOTAL TOLERANCE 
+C.D.TOL. (OUT OF MESH)   (INCH) 
-CD. TOL. (INTO   MESH)   (INCH) 
CONTACT RATIO INPUT 
HERTZ CONSTANT FOR COMPLIANCE 
CENTER DISTANCE,THEO. (INCH) 
CENTER DISTANCE,MAX.  (INCH) 
CENTER DISTANCE,MIN.  (INCH) 
CIRCULAR PITCH        (INCH) 

0. 
0. 

27.0000 
176.0000 
25.0000 
10.0000 

.0020 

.0100 
0.0020 
0.0050 
2.6000 
2.3600 
30.0000 
30.0000 

.3000 

.3000 
0. 
0. 

25.0000 
180.0000 

2265.0000 
2265.0000 

1.0000 
6960.0000 

0.0000 
0. 
0. 
.0000 
.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
159899. 

10.1500 
10.1500 
10.1500 
0.3142 
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) 0.2847 
(DEG) DRIVE 25.0000 
(DEG) DRIVE 25.0000 
D.-THEO. 1.5176 
D.-MAX. 1.3443 

0.0528 
0.0000 

CIRCULAR BASE PITCH   (INCH 
MAX.OPERATING PRESS. ANGLE 
MIN.OPERATING PRESS. ANGLE 
NOMINAL CONTACT RATIO AT C.: 
MINIMUM CONTACT RATIO AT C. 
MATERIAL CONSTANT 
CODE FOR TYPE OF OIL 

Calculated Data 

NUMBER OF TEETH 
PITCH DIAMETER (INCH) 
BASE CIRCLE DIA. DRIVE SIDE (INCH) 
TOOTH TIP DIAMETER,MAX. (INCH) 
TOOTH TIP DIAMETER,MIN. (INCH) 
EFFECTIVE TOOTH TIP DIA (INCH) 
ROOT DIAMETER,MAX. (INCH) 
ROOT DIAMETER,MIN. (INCH) 
TRUE INV.FORM DIA. (INCH) 
TOPLAND WIDTH,MIN. (INCH) 
ROOT FILLET RADIUS,MIN. (INCH) 
MACHINE BACKLASH,MAX. (INCH) 
MACHINE BACKLASH,MIN. (INCH) 
CIRCULAR TOOTH THICKNESS (INCH) 
MACH.CIRC.TOOTH THKNS.MAX. (INCH) 
MACH.CIRC.TOOTH THKNS.MIN. (INCH) 
TIP/ROOT CLEAR.MIN AT CD MIN.(INCH) 
ROLL ANGLE AT TOOTH TIP DIA. (DEG) 
ROLL ANGLE (DEG) 

AT ADD.INV.MODIFICATION DIA. (INCH) 
ROLL ANGLE AT PITCH DIA.      (DEG) 
ROLL ANGLE (DEG) 

AT DED.INV.MODIFICATION DIA. (INCH) 
ROLL ANGLE AT TIFD (DEG) 
INSPECTION WIRE/BALL DIA. (INCH) 
MAX.MEASUREMENT OVER 2 WIRE/BALL    (INCH) 
MIN.MEASUREMENT OVER 2 WIRE/BALL    (INCH) 
EFFECTIVE WIDTH AT TOOTH TIP 
EFFECTIVE WIDTH AT START OF FILLET 
RADIUS TO BASE OF FILLET INPUT (INCH) 
OUTSIDE RADIUS INPUT  (INCH) 
FILLET RADIUS INPUT   (INCH) 
DAMPING RATIO INPUT 

NUMBER OF PLANETS 
NUMBER OF BOUNDARY CONDITION ITERATIONS 
TOLERANCE FOR BOUNDARY CONDITION CONVERGENCE 
EQUIVALENT MASS OF SUN GEAR 
EQUIVALENT MASS OF PLANET CARRIER 
EQUIVALENT MASS OF RING GEAR 
EQUIVALENT MASS OF PLANET # 1 

COMPLIANCE   CONSTANTS 

SUN 

27.0000 
2.7000 
2.4470 
2.9300 
2.9260 
2.9060 
2.4976 
2.4876 
2.5586 
0.0475 
0.0381 
0.0025 
0.0005 
0.1711 
0.1706 
0.1686 
0.0162 

37.7323 
26.7174 
2.7000 

26.7175 
26.7174 
2.7000 
17.4975 
0.1650 
2.9380 
2.9342 
2.6000 
2.6000 
0.0000 
0.0000 
0.0000 
0.0000 

1 
20 

0.10000E-01 
0.10000E+01 
0.10000E+01 
0.10000E+01 
0.10000E+01 

PLANET 

176.0000 
17.6000 
15.9510 
17.7700 
17.7660 
17.7460 
17.3522 
17.3423 
17.4064 
0.0602 
0.0401 
0.0025 
.0005 
.1431 
.1426 
.1406 
.0089 

28.1317 
26.7174 
17.6000 
26.7174 
26.7174 
17.6000 
25.0276 
0.1900 

17.8709 
17.8666 
2.3600 
2.3600 
0.0000 
0.0000 
0.0000 
0.0000 

SUN-PLANET 

0.1379E-06 * ( 1 + -0.1229E+00 * (S/SO) +  0.5538E+00 * (S/SO)**2 

+ -0.1054E+00 * (S/SO)**3 +  0.8697E-01 * (S/SO)**4) 

C FORTRAN PROGRAM TO CALCULATE SPLIT TORQUE RIG 
C TIME-VARYNG STIFFNESS FUNCTION FOR THE SPUR MESH 
C 
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c 

c 
DIMENSION A(8),SK(8) 

DO 11 J=l,495 
RJ=J 
X=14.+(13.333/245.)*RJ 

C 
C CLEAR ARRAYS 
C 

DO 12 K=l,8 
A(K)=0. 
SK(K)=0. 

12 CONTINUE 
C 
C CALC LOCAL COORDINATE ARRAY 
C 

DO 13 K=l,8 
RK=K 
A(K)=X-(RK-1.)*13.333 

13 CONTINUE 
C 
C  CALC SLICE STIFFNESS ARRAY 
C 

DO 14 K=l,8 
IF{ A(K) -LT. -9.483 ) GOTO 117 
IF( A(K) .GT.  7.456 ) GOTO 117 
THETA=A(K) 
CALL LOA(S,THETA) 
CALL COMPL(S,C) 
SK(K)=1./C 

117 CONTINUE 
14 CONTINUE 

TK=0. 
C 
C LOOP TO CALC MESH STIFFNESS = SUM OF SLICE STIFFNESSES 
C 

DO 15 K=l,8 
TK=TK+SK(K) 

15 CONTINUE 
WRITE(9,200) J,K,TK,TKM 

11 CONTINUE 
200 FORMAT(I5,F10.4,2E14.4) 

STOP 
END 

C 
C 
C   SUBROUTINE COMPL (S,C) 
C  VERSION 1.0 
C   TIM KRANTZ  2/26/92 
C 
C   FORTRAN SUBROUTINE TO CALCULATE TOOTH STIFFNESS 
C   COMPLIANCE KNOWING CORNELL'S COMPLIANCE COEFFICIENTS 
C 
C   REVISIONS: 
C  VERSION 1.0  TIM KRANTZ  2/26/92 
C 
C 
C   REQUIRED INPUTS: 
C   S=LOCATION ALONG LINE OF ACTION 
C 
C   RETURNS: 
C   COMP = COMPLIANCE OF TOOTH PAIR 
C 
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Q ****************************************** 

C ** NOTE: ** 
C ** 1) BY SETTING VALUES OF COEFFICIENTS ** 
C ** THE SUB IS SPECIFIC FOR A         ** 
C ** PARTICULAR GEAR DESIGN.           ** 
C ** 2) THE SUB IS NOT INTELLIGENT ABOUT  ** 
C ** THE VALUE OF S.  IF YOU ASK IT    ** 
C ** TO CALCULATE FOR A VALUE OF S     ** 
C ** THAT REPRESENTS THE GEAR TOOTH    ** 
C ** PAIR NOT IN CONTACT, IT WILL      ** 
C ** FAITHFULLY CALCULATE A COMPLIANCE ** 
C ** ANYHOW.                            ** 
Q ** ** 
Q ****************************************** 

C 
C 

SUBROUTINE COMPL(S,COMP) 
C 
C  THE NEXT 5 FORTRAN STATEMENTS ARE SPECIFIC FOR A GIVEN DESIGN 
C  WHERE  A, B,C,D,CO ARE COMPLIANCE COEFFICIENTS PER CORNELL 
C  AND S0=LENGTH OF LINE OF ACTION OVER ANGLE OF APPROACH 
C 

S0 = 0.23084 
A=0.-0.1229 
B=0.5538 
C=0.-0.1054 
D=.8697E-01 
C0=0.1379E-06 
x=s/so 
COMP=C0*(l+A*X+B*X*X+C*X*X*X+D*X*X*X*X) 
RETURN 
END 

C   SUBROUTINE TO CALCULATE LINE OF ACTION 
C   COORDINATE POSITION KNOWING THE LOCAL 
C   ANGULAR COORDINATE THETA. 
C   THIS SUBROUTINE IS FOR THE SPLIT TORQUE 
C   HELICAL MESH GEOMETRY IN THE TRANSVERSE PLANE. 
C   IT IS ASSUMED THAT BOTH S AND THETA ARE ZERO 
C   AT THE PITCH POINT AND NEGATIVE ON THE ANGLE OF 
C   APPROACH.  ALSO IT IS ASSUMED THAT THETA IS IN DEGRESS 
C   AND IS WITHIN THE RANGE OF THE ANGLE OF APPROACH 
C   THROUGH ANGLE OF RECESS 
C 
C     INPUTS : THETA IN DEGREES 
C     OUTPUTS: S (INCHES) 
C 

SUBROUTINE LOA(S,THETA) 
X=THETA*3.14159/180. 
S=0.9448*(TAN(.349292+X)-.364227) 
RETURN 
END 
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Appendix D 

Calculations to Determine Helical Mesh Stiffness 

The output from the GEARDYNMULT program is presented herein. The calculations to determine helical 
mesh stiffness were performed for the NASA Lewis split torque rig helical mesh. The gear dimensions used are 
those in the normal plane and were the nominal dimensions from engineering prints. The face widths used are 
1/10 of the total face width because the helical gear was first modeled as 10 staggered spur gears. The output 
file from GEARDYNMULT follows: 

SUN-PLANET MESH 

ROTATIONAL  PLANE 
INVOLUTE MODIFICATIONS 
*********************** 

(ENGAGEMENT) 

PINION 

LOC. INV. MODIFIC. DIA. ROLL ANG 
MIN. MAX. 

0.0 0.000000 0.000000 2.0110 20.8652 
0.1 0.000000 0.000000 2.0014 19.9960 
0.2 0.000000 0.000000 1.9921 19.1267 
0.3 0.000000 0.000000 1.9832 18.2574 
0.4 0.000000 0.000000 1.9747 17.3882 
0.5 0.000000 0.000000 1.9666 16.5191 
0.6 0.000000 0.000000 1.9588 15.6499 
0.7 0.000000 0.000000 1.9515 14.7807 
0.8 0.000000 0.000000 1.9445 13.9114 
0.9 0.000000 0.000000 1.9380 13.0422 
1.0 0.000000 0.000000 1.9318 12.1728 

GEAR 

LOC. INV. MODIFIC. DIA. ROLL ANG 
MIN. MAX. 

0.0 0.000000 0.000000 7.7927 20.8652 
0.1 0.000000 0.000000 7.8025 21.0895 
0.2 0.000000 0.000000 7.8125 21.3139 
0.3 0.000000 0.000000 7.8225 21.5380 
0.4 0.000000 0.000000 7.8327 21.7625 
0.5 0.000000 0.000000 7.8429 21.9868 
0.6 0.000000 0.000000 7.8532 22.2110 
0.7 0.000000 0.000000 7.8636 22.4353 
0.8 0.000000 0.000000 7.8741 22.6597 
0.9 0.000000 0.000000 7.8847 22.8840 
1.0 0.000000 0.000000 7.8954 23.1083 
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(DISENGAGEMENT) 

PINION 

LOC. INV. MODIFIC. DIA. ROLL ANG 
MIN. MAX. 

0.0 0.000000 0.000000 2.0110 20.8652 
0.1 0.000000 0.000000 2.0235 21.9495 
0.2 0.000000 0.000000 2.0366 23.0340 
0.3 0.000000 0.000000 2.0502 24.1185 
0.4 0.000000 0.000000 2.0643 25.2028 
0.5 0.000000 0.000000 2.0790 26.2872 
0.6 0.000000 0.000000 2.0942 27.3717 
0.7 0.000000 0.000000 2.1098 28.4561 
0.8 0.000000 0.000000 2.1260 29.5405 
0.9 0.000000 0.000000 2.1426 30.6250 
1.0 0.000000 0.000000 2.1597 31.7094 

GEAR 

LOC. 

0.0 
0.1 
0.2 

INV. MODIFIC. 
MIN.      MAX. 

DIA. 

.000000 

.000000 

.000000 

.000000 

.000000 

.000000 

.000000 
0.000000 
0.000000 
0.000000 
0.000000 

000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 
000000 

INPUT 

7927 
7805 
7685 
7566 
7449 
7333 
7219 
7106 

7.6995 
7.6885 
7.6777 

DATA 

(INCH) 
(INCH) 
(INCH) 

(LB/SQ.INCH) 

NO.TEETH   - SUN 
NO.TEETH - PLANET 
PRESSURE ANGLE (DEGREES) DRIVE SIDE 
DIAMETRAL PITCH 
TOOTH TIP RADIUS TOL. (INCH) 
EDGE BREAK ON TOPLAND (INCH) 
MACHINED BACKLASH TOL.(INCH) 
ROOT RADIUS TOL. 
FACE WIDTH - SUN 
FACE WIDTH - PLANET 
YOUNGS MOD.*E-6 - SUN 
YOUNGS MOD.*E-6 - PLANET (LB/SQ.INCH) 
POISSONS RATIO  - SUN 
POISSONS RATIO  - PLANET 
SURFACE ROUGHNESS-MAX (AA) 
OIL INLET TEMPERATURE (DEG.F) 
INITIAL RPM OF RANGE 
FINAL RPM OF RANGE 
NUMBER OF INTERVALS 
TORQUE INPUT (IN-LBS) 
TOTAL INV.PROFILE MODIFICATION,ENGAGE (INCH) 
TOTAL INV.PROFILE MODIFICATION,DISENG (INCH) 
INV.PROFILE MOD.LOCATION-% OF SOE 
INV.PROFILE MOD.LOCATION-% OF SOD 
INV.PROFILE MOD.TOTAL TOLERANCE 
+C.D.TOL. (OUT OF MESH)    (INCH) 

ROLL ANG. 

20.86521 
20.58531 
20.30541 
20.02571 
19.74571 
19.46581 
19.18601 
18.90621 
18.62631 
18.34651 
18.06661 

32 
124 
20 
15 
0 
0 
0 
0 
0 
0 

30 
30 
0 
0 

25 
180 

2265 
2265 

1 
695 

0 
0 
0 
0 
0 
0 

.0000 

.0000 

.0100 

.9123 

.0020 

.0100 

.0020 

.0050 

.1750 

.1500 

.0000 

.0000 

.3000 

.3000 

.0000 

.0000 

.0000 

.0000 

.0000 

.6001 

.0000 

.0000 

.0000 

.0000 

.0000 

.0000 
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-C.D.TOL. (INTO   MESH)    (INCH) 
CONTACT RATIO INPUT 
HERTZ CONSTANT FOR COMPLIANCE 
•CENTER DISTANCE,THEO. (INCH) 
CENTER DISTANCE,MAX.  (INCH) 
CENTER DISTANCE,MIN.  (INCH) 
CIRCULAR PITCH        (INCH) 
CIRCULAR BASE PITCH   (INCH) 
MAX.OPERATING PRESS. ANGLE (DEG) DRIVE 
MIN.OPERATING PRESS. ANGLE (DEG) DRIVE 
NOMINAL CONTACT RATIO AT CD.-THEO. 
MINIMUM CONTACT RATIO AT CD.-MAX. 
MATERIAL CONSTANT 
CODE FOR TYPE OF OIL 

0.0000 
0.0000 
306861. 
4.9019 
4.9019 
4.9019 
0.1974 
0.1855 

20.0100 
20.0100 
1.7366 
1.4258 
0.0528 
0.0000 

Calculated Data 
SUN PLANET 

NUMBER OF TEETH 
PITCH DIAMETER (INCH) 
BASE CIRCLE DIA. DRIVE SIDE (INCH) 
TOOTH TIP DIAMETER,MAX. (INCH) 
TOOTH TIP DIAMETER,MIN. (INCH) 
EFFECTIVE TOOTH TIP DIA (INCH) 
ROOT DIAMETER,MAX. (INCH) 
ROOT DIAMETER,MIN. (INCH) 
TRUE INV.FORM DIA. (INCH) 
TOPLAND WIDTH,MIN. (INCH) 
ROOT FILLET RADIUS,MIN. (INCH) 
MACHINE BACKLASH,MAX. (INCH) 
MACHINE BACKLASH,MIN. (INCH) 
CIRCULAR TOOTH THICKNESS (INCH) 
MACH.CIRC.TOOTH THKNS.MAX. (INCH) 
MACH.CIRC.TOOTH THKNS.MIN. (INCH) 
TIP/ROOT CLEAR.MIN AT CD MIN.(INCH) 
ROLL ANGLE AT TOOTH TIP DIA. (DEG) 

ROLL ANGLE (DEG) 
AT ADD.INV.MODIFICATION DIA. (INCH) 
ROLL ANGLE AT PITCH DIA. (DEG) 

ROLL ANGLE (DEG) 
AT DED.INV.MODIFICATION DIA. (INCH) 
ROLL ANGLE AT TIFD (DEG) 

INSPECTION WIRE/BALL DIA. (INCH) 
MAX.MEASUREMENT OVER 2 WIRE/BALL    (INCH) 
MIN.MEASUREMENT OVER 2 WIRE/BALL    (INCH) 
EFFECTIVE WIDTH AT TOOTH TIP 
EFFECTIVE WIDTH AT START OF FILLET 

RADIUS TO BASE OF FILLET INPUT (INCH) 
OUTSIDE RADIUS INPUT  (INCH) 
FILLET RADIUS INPUT   (INCH) 
DAMPING RATIO INPUT 

32.0000 
2.0110 
1.8896 
2.1597 
2.1557 
2.1357 
1.8796 
1.8696 
1.9318 
0.0410 
0.0279 
0.0025 
0.0005 
0.1071 
0.1066 
0.1046 
0.0144 

31.7094 
20.8652 
2.0110 

20.8652 
20.8652 
2.0110 

12.1731 

0.1050 
2.1687 
.1640 
.1750 

2. 
0. 
0.1750 

0.0000 
0.0000 
0.0000 
0.0000 

NUMBER OF PLANETS 
NUMBER OF BOUNDARY CONDITION ITERATIONS 
TOLERANCE FOR BOUNDARY CONDITION CONVERGENCE 

EQUIVALENT MASS OF SUN GEAR 
EQUIVALENT MASS OF PLANET CARRIER 
EQUIVALENT MASS OF RING GEAR 
EQUIVALENT MASS OF PLANET # 1 

124.0000 
7.7927 
7.3223 
7.8954 
7.8914 
7.8714 
7.6284 
7.6184 
7.6777 
0.0493 
0.0302 
0.0025 
0.0005 
0.0903 
0.0898 
0.0878 
0.0078 

23.1083 
20.8652 
7.7927 
20.8652 
20.8652 
7.7927 
18.0666 

0.1150 
7.9476 
.9423 
.1500 
.1500 

7. 
0. 
0. 

0.0000 
0.0000 
0.0000 
0.0000 

1 
20 

0.10000E-01 

0.10000E+01 
0.10000E+01 
0.10000E+01 
0.10000E+01 

COMPLIANCE       CONSTANTS 
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SUN-PLANET 

0.2421E-05 * ( 1 + -0.2021E+00 * (S/SO) +  0.5166E+00 * (S/S0)**2 

+ -0.3206E-01 * (S/S0)**3 +  0.1976E+00 * (S/S0)**4) 

******* NON PLANETARY, NO CARRIER OR RING ****** 

C  PROGRAM TO CALCULATE SPLIT TORQUE RIG 
C  TIME VARYING STIFFNESS FUNCTION FOR THE HELICAL MESH 
C  HMESH1.FOR IS FOR HELIX ANGLE OF 6 DEGREES, ONLY 
C  ONE LINE MUST BE CHANGED FOR A DIFFERENT HELIX ANGLE! 
C 

DIMENSION A(240,23),SK(240,23),B(30),R(300) 
C 

B(l)=6. 
B(2)=15. 
DO 734 MN=1,2 
AA=B(MN)*3.14159/180. 
XLF=0.356139*TAN(AA) 
DO 11 K=800,1025 
RK=K 
X=0.10*(RK-1.) 

C 
C  CLEAR ARRAYS 
C 

DO 111 J=l,23 
DO 112 1=1,240 
A(I,J)=0. 
SK(I,J)=0. 

112 CONTINUE 
111 CONTINUE 

C 
C  CALC LOCAL COORDINATE ARRAY 
C 

DO 113 J=l,23 
DO 114 1=1,240 
RI=I 
RJ=J 
A(I,J)=X-(RI-1.)*XLF-(RJ-1.)*11.25 

114 CONTINUE 
113 CONTINUE 

C 
C  CALC SLICE STIFFNESS ARRAY 
C 

DO 115 J=l,23 
DO 116 1=1,240 
SK(I,J)=0. 
IF( A(I,J) .LT. -9.771 ) GOTO 117 
IF( A(I,J) .GT.  7.779 ) GOTO 117 
THETA=A(I,J) 
CALL LOA(S,THETA) 
CALL COMPL(S,C) 
SK(I,J)=1./(C*24.) 

C 
C  THE 24 IN THE STATEMENT ABOVE IS NEEDED BECAUSE THE SUBROUTINE 
C  COMPL CALCULATES COMPLIANCE FOR A 1/10TH SLICE AND NOW I AM 
C  DOING CALCS FOR 1/240TH SLICE - COMPLIANCE WILL BE 24 TIMES GREATER! 
C 
C     WRITE(8,400) I,J,THETA,S,SK(I,J) 

117 CONTINUE 
116 CONTINUE 
115 CONTINUE 
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TK=0. 
C 400 FORMAT(2I5,2F10.5,E14.4) 
C 
C  LOOP TO CALC MESH STIFFNESS = SUM OF SLICE STIFFNESS 
C 

DO 118 J=l,23 
DO 119 1=1,240 
TK=TK+SK(I,J) 

C    WRITE(8,100) I,J,A(I,J),SK(I,J) 
119 CONTINUE 
118 CONTINUE 

TKM=TK*175.118 
IF ( MN .EQ. 1) WRITE(8,200) X,TK,TKM 

C IF ( MN .EQ. 2) WRITE(9,200) X,TK,TKM 
C IF ( MN .EQ. 3) WRITE(10,200) X,TK,TKM 
C IF ( MN -EQ. 4) WRITE(11,200) X,TK,TKM 
C IF { MN .EQ. 5) WRITE(12,200) X,TK,TKM 
C IF ( MN .EQ. 6) WRITE(13,200) X,TK,TKM 
C     IF ( MN .EQ. 7) WRITE(14,200) X,TK,TKM 

write(6,333) MN,K 
C     WRITE(8,200) X,TK,TKM 

333 format(2i5) 
R(K-799)=TK 

11 CONTINUE 
RMAX=R(1) 
RMIN=R(1) 
SUM=R(1) 
DO 227 KK=801,1025 
SUM=SUM+R(KK-799) 
IF( R(KK-799) .GT. RMAX) RMAX=R(KK-799) 
IF( R(KK-799) -LT. RMIN) RMIN=R(KK-799) 

227 CONTINUE 
SUM=SUM/225. 
DIFF=RMAX-RMIN 
PC=100*DIFF/SUM 
CR=1+7.59758*TAN(AA) 

c     WRITE(8,300) B(MN),CR,PC 
734 CONTINUE 

C 100 FORMAT(2I5,F10.5,E14.4) 
300 FORMAT(3F10.4) 
200 FORMAT(F10.5,2E14.4) 

STOP 
END 

C 
C   SUBROUTINE COMPL (S,C) 
C   VERSION 1.0 
C   TIM KRANTZ  2/26/92 
C 
C   FORTRAN SUBROUTINE TO CALCULATE TOOTH STIFFNESS 
C   COMPLIANCE KNOWING CORNELL'S COMPLIANCE COEFFICIENTS 
C 
C  REVISIONS: 
C  VERSION 1.0  TIM KRANTZ  2/26/92 
C 
C 
C   REQUIRED INPUTS: 
C   S=LOCATION ALONG LINE OF ACTION 
C 
C  RETURNS: 
C   COMP = COMPLIANCE OF TOOTH PAIR 
C 
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Q ****************************************** 

C ** NOTE: ** 
C ** 1) BY SETTING VALUES OF COEFFICIENTS ** 
C ** THE SUB IS SPECIFIC FOR A         ** 
C ** PARTICULAR GEAR DESIGN.           ** 
C ** 2) THE SUB IS NOT INTELLIGENT ABOUT  ** 
C ** THE VALUE OF S.  IF YOU ASK IT    ** 
C ** TO CALCULATE FOR A VALUE OF S     ** 
C ** THAT REPRESENTS THE GEAR TOOTH    ** 
C ** PAIR NOT IN CONTACT, IT WILL      ** 
C ** FAITHFULLY CALCULATE A COMPLIANCE ** 
C ** ANYHOW.                            ** 
Q ** ** 
Q ****************************************** 

C 
c 

SUBROUTINE COMPL(S,COMP) 
C 
C  THE NEXT 5 FORTRAN STATEMENTS ARE SPECIFIC FOR A GIVEN DESIGN 
C  WHERE  A,B,C,D,CO ARE COMPLIANCE COEFFICIENTS PER CORNELL 
C  AND S0=LENGTH OF LINE OF ACTION OVER ANGLE OF APPROACH 
C 

S0=0.173406 
A=0.-0.2021 
B=0.5166 
C=0.-.03206 
D=0.1976 
C0=0.2421E-05 
X=S/S0 
COMP=C0*(1+A*X+B*X*X+C*X*X*X+D*X*X*X*X) 
RETURN 
END 

C 
C   SUBROUTINE TO CALCULATE LINE OF ACTION 
C   COORDINATE POSITION KNOWING THE LOCAL 
C   ANGULAR COORDINATE THETA. 
C   THIS SUBROUTINE IS FOR THE SPLIT TORQUE 
C   HELICAL MESH GEOMETRY IN THE TRANSVERSE PLANE. 
C   IT IS ASSUMED THAT BOTH S AND THETA ARE ZERO 
C   AT THE PITCH POINT AND NEGATIVE ON THE ANGLE OF 
C   APPROACH.  ALSO IT IS ASSUMED THAT THETA IS IN DEGREES 
C   AND IS WITHIN THE RANGE OF THE ANGLE OF APPROACH 
C   THROUGH ANGLE OF RECESS 
C 
C     INPUTS : THETA IN DEGREES 
C     OUTPUTS: S (INCHES) 
C 

SUBROUTINE LOA(S,THETA) 
X=THETA*3.14159/180. 
S=0.9448*(TAN(.349292+X)-.364227) 
RETURN 
END 
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Appendix E 

Calculations to Determine Input and Output Stiffnesses 
and Inertias for Open-Loop Code 

The data from the following tables were used in the calculations. 

Torsional stiffness 

Component Stiffness, K, 
in.-lb/rad 

Bull gear web, K„ 156.0x10* 
Torquemeter, K^, 17.9 
Bull gear shaft, K^ 36.4 
Compound shaft, K^ 12.7 
Pinion shaft, K,,, 0.71 
High-speed shaft/coupling, Kte 3.5 

Mesh stiffness data 

Component Stiffness, K, 
lb/in. 

Helical mesh, K^, 
Spur mesh, K„, 

5.7x16* 
8.5 

Inertia data 

Component Inertia, I, 
lbm-in.2 

Torquemeter, I,, 201 
Drive motor, 1^ 4100 
Bull gear, 1^ 466 
Compound shaft, I0 11 
Helical pinion, 1^ 1 
High-speed shaft/coupling, Ite 35 

Total gear ratio of gearbox, GR   . .. 25.26 
Base radius, in. 

Bull gear, R„g    7.975 
Spur pinion, R^     1-224 
Helical gear, R^    0.944 
Helical pinion, R^     3.658 
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Apply the first rule: the kinetic energy of the output and input inertias of the analytical model should equal the 
kinetic energy of all the components not directly represented in the analytical model KE. Let 9 represent the 
rotational speed of the component. Then 

+ 2 -I (6 )2 
n     CSV    CS' + ^w2 + 4I-(e-)2 

since 
9bg   -   etq  -  8<ta 

e = e„ • _^ cs dm        T> 

ehp = ota = e^ • GR 

Then 

KE = ± OL, + IK. + ijeL + 21 

f       V 

R 
2Q2 9L + dhp + I^XGR)2^ 

or 

KE = 1  fl2 

26dm I.   + I.   + I   + 21 dm bg tq a 

VY 

R + dhp + V • (GR)2 

Applying the data 

so 

KE = eL • (14 350 lbm-in.2) 

KE = 9L • (14 350) = I[l0(90)2 + I.(9.)2' 

since 8; = 90 • GR and 9^ = 9, 

KE = et ■ 14 350 = .!(]# + I • GR2 • 9: 

Thus, the result of the first rule is 

28 700 = I0 + I; • (25.26)2 
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Apply the second rale: the ratio of the input inertia to the output inertia should equal the ratio of the stiffnesses 
of the two branches of the parallel path to the drive motor. 

Path number 1 is the output shaft of the test gearbox to the drive motor: 

VI 

K, = 
1    +J_+    ! 

K, 
bg Ktq ^g 

= 9.02xl06 in.-lb/rad 

Path number 2 is the input shaft of the test gearbox (through the slave gearbox) to the drive motor: 

Let 
^      D 

where U is the unit torque at the test box pinion and D is the test box pinion rotation due to the deflection of all 
components in path 2. 

Let 
D = Dw + Dm + DK + Dta + Dm + Dhs + D, hs T ^ps 

where Dw is the pinion rotation due to the deflection of K^, and D^ is the pinion rotation due to the deflection 
of K, etc. 

Then 

D„ = 
K. ps 

D_ = 
K„ 

°to = 1 

Dcs = 

2Khmay
2 

1 

2K. 

sm 

** 

l 

2K_ 
( ^2 

D... = (GR)2 
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Substituting the numeric values, 

From the first rule, 

From the second rule, 

so 

K2 = 1.18xl05 in.-lb/rad 

28 700 = I0 + I;(25.26)2 

I I- K. 9 02xl06 

_1 = _L        or        I   = _L I. = yu I. 
K,      iq °      Kj  '      1.18x10s  ' 

28 700 = 902xl°61. + (25.26)2I, 
1.18xl05  ' 

I; = 40.2 lbm-in.2 

I  = 3070 lbm-in.2 
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Dual power path 

Output power 

(low speed) 

Input power 

(high speed) 

Figure 1.1 .—Split torque design for helicopter application. 
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Figure 2.1.—Gear dynamics model. 
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Figure 2.4.—Split torque model (Note: damping elements, input and 
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Figure 2.5.—Top view of analytical model showing global and local 
reference frames. 

100 t ► 

80 —                                     / 
■o a 
o 

de
si

gn
 

8 —                          / 

o 

P
er

ce
nt

 

20 

/             I                  I I                  I                  I 

.2 .4 .6 .8 

Time, sec 
Figure 2.6.—Ramp shape loading function. 

1.0 

120x103 

200 300 400 

Load, lb 

Figure 3.1.—Bearing stiffness as a function of load, (a) Stiffness 
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Figure 3.5.—Helical mesh stiffness variation by staggered spur 
gear approximation, (a) 24 spur gear slices per helical gear, (b) 
240 spur gear slices per helical gear. 
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Figure 3.12.—Closed-loop system modeled as an open-loop system, (a) Experimental 
system, closed loop, (b) Analytical model, open loop. 
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Figure 3.17.—Effect of friction on balance beam rotation, (a) Without 
friction, (b) With friction. 
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Figure 3.18.—Shaft torques with assembly error present, (a) Input 
shaft, (b) Compound shafts, (c) Output shafts. 
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Figure 3.23.—Dynamic total mesh deformation and components for 
helical mesh. (Note: positive deformation yields compression.) 
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Figure 3.24.—Dynamic total mesh deformation and components for 
spur mesh. (Note: positive deformation yields compression.) 
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Figure 3.25.—Shaft torques with large total composite gear errors, 
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Figure 3.28.—Details of compound shaft torque spectra near spur 
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Figure 3.30.—Gear mesh forces for helical mesh 1. (a) Showing 
tooth frequencies, (b) Showing shaft frequencies. 
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Figure 3.31.—Gear mesh forces for helical mesh 2. (a) Showing 
tooth frequencies, (b) Showing shaft frequencies. 
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Figure 3.32.—Gear mesh forces for spur mesh 1. (a) Showing tooth 
frequencies, (b) Showing shaft frequencies. 
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Figure 3.33.—Gear mesh forces for spur mesh 2. (a) Showing tooth 
frequencies, (b) Showing shaft frequencies. 
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